Articles Information
Journal of Nanoscience and Nanoengineering, Vol.5, No.1, Mar. 2019, Pub. Date: Apr. 10, 2019
Fabrication of Electrode TiO2 Nanofibers for Hydrogen Generation from Photoelectrochemical Water Splitting
Pages: 1-6 Views: 1476 Downloads: 757
Authors
[01]
Van Nghia Nguyen, Department of Physics, Quy Nhon University, Quy Nhon City, Viet Nam; Department of Physics, Hue University of Sciences, Hue City, Viet Nam.
[02]
Manh Son Nguyen, Department of Physics, Hue University of Sciences, Hue City, Viet Nam.
[03]
Minh Thuy Doan, Department of Physics, Quy Nhon University, Quy Nhon City, Viet Nam.
[04]
Nhat Hieu Hoang, Department of Physics, Quy Nhon University, Quy Nhon City, Viet Nam.
Abstract
TiO2 nanofibers (NFs) structures were fabricated on the indium tin oxide (ITO) conducting substrates that serve as working electrodes in photoelectrochemical (PEC) cells for the generation of hydrogen by water splitting. The TiO2 -NFs were synthesized by the electrospinning method at room temperature using the spray solution of Titanium tetraisopropoxide and Polyvinylpyrrolidone polymer at different times spraying to optimize the water splitting efficiency. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS). The photoelectrochemical (PEC) properties of the electrodes were measured, using a three-electrodes electrochemical analyzer illuminated with a standard 150W Xenon lamp. It was found that maximum water splitting efficiency of TiO2 -NFs electrode with spraying time at 20 min was about 0.03% (corresponding photocurrent density 80 μA/cm2 at Vbias = 0.2 V). This result is relatively higher compared to TiO2 nanostructures in previous studies.
Keywords
Water Splitting, TiO2 Nanofiber, Photoelectrochemical Cell, Electrospinning, Nanomaterials
References
[01]
M. Ge, J. Cai, J. Iocozzia, C. Cao, J. Huang, X. Zhang, J. Shen, S. Wang, S. Zhang, K. Zhang, Y. Lai, and Z. Lin, “A review of TiO2 nanostructured catalysts for sustainable H2 generation,” International Journal of Hydrogen Energy 42 (12), 8418-8448 (1972).
[02]
J. Y. Huang, S. H. Li, M. Z. Ge, L. N. Wang, T. L. Xing, G. Q. Chen, X. F. Liu, S. S. Al-Deyab, K. Q. Zhang, T. Chen, and Y. K. Lai, “Robust superhydrophobic TiO2 @fabrics for UV shielding, self-cleaning and oil-water separation,” J Mater Chem A. 3 (6), 2825-2832 (2015).
[03]
J. Nowotny, C. C. Sorrell, R. L. Sheppard, and T. Bak, “Solar-hydrogen: Environmentally safe fuel for the future,” International Journal of Hydrogen Energy, 30 (5), 521-544 (2005).
[04]
T. Bak, J. Nowotny, M. Rekas, and C. C. Sorrell, “Photoelectrochemical hydrogen generation from water using solar energy: materials-related aspects,” Int J Hydrogen Energy 27 (10), 991–1022 (2002).
[05]
S. U. M. Khan, M. Al-Shahry, and W. B. Ingler, “Efficient Photochemical Water Splitting by a Chemically Modified N-TiO2,”. Science 297 (5590), 2243–2245 (2002).
[06]
Fujishima and K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode,” Nature 238, 37-38 (1972).
[07]
L. Zeng, Z. Lu, M. H. Li, J. Yang, W. L. Song, D. W. Zeng, and C., Xie, “A modular calcination method to prepare modified N-doped TiO2 nanoparticle with high photocatalytic activity,” Appl Catal B-Environ 183, 308-316 (2016).
[08]
H. Y. Chuang and D. H. Chen, “Fabrication and photoelectrochemical study of Ag@TiO2 nanoparticle thin film electrode,” Int J Hydrogen Energy 36 (16), 9487-9495 (2011).
[09]
B. Liu, J. Z. Xiao, L. Xu, Y. J. Ya, B. F. O. Costa, V. F. Domingos, E. S. Ribeiro, F. N. Shi, K. Zhou, J. Su, H. Wu, K. Zhong, J. A. Paixao, and J. M. Gil, “Gelatin-assisted sol-gel derived TiO2 microspheres for hydrogen storage,” Int J Hydrogen Energy 40 (14), 4945-4950 (2015).
[10]
Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One-Dimensional Nanostructures: Synthesis, Characterization, and Applications,” Advanced Materials 15 (5), 353–389 (2003).
[11]
R. Sui, A. S. Rizkalla, and P. A. Charpentier, “Formation of Titania Nanofibers: A Direct Sol-Gel Route in Supercritical CO2,” Langmuir 21 (14), 6150–6153 (2005).
[12]
B. Caratão, E. Carneiro, P. Sá, B. Almeida, and S. Carvalho, “Properties of Electrospun TiO2 Nanofibers,” J. Nanotech, 2014 (2), 472132 (2014).
[13]
C. H. Chang, H. C. Lee, C. C. Chen, Y. H. Wu, Y. M. Hsu, Y. P. Chang, T. I. Yang, and H. W. Fang, “A Novel Rotating Electrochemically Anodizing Process to Fabricate Titanium Oxide Surface Nanostructures Enhancing the Bioactivity of Osteoblastic Cells,” J. Bio. Mat. Res. - Part A, 100 (7), 1687–1695 (2012).
[14]
Tavangar, B. Tan, and K. Venkatakrishnan, “Study of the Formation of 3-D Titania Nanofibrous Structure by MHz Femtosecond Laser in Ambient Air,” Journal of Applied Physics 113 (2), 9 (2013).
[15]
H. Wang, Y. Liu, M. Zhong, H. Xu, H. Huang, and H. Shen, “In Situ Controlled Synthesis of Various TiO2 Nanostructured Materials via a Facile Hydrothermal Route”. Journal of Nanoparticle Research 13 (5), 1855–1863 (2011).
[16]
H. N. Hieu, N. Q. Dung, J. Kim, and D. Kim, “Urchin-like nanowire array: a strategy for high-performance ZnO-based electrode utilized in photoelectrochemistry,” Nanoscale, 5 (12), 5530-5538 (2013).
[17]
W. Nuansing, S. Ninmuang, W. Jarernboon, S. Maensiri, and S. Seraphin, “Structural Characterization and Morphology of Electrospun TiO2 nanofibers,” Materials Science and Engineering B: Solid-State Materials for Advanced Technology 131 (1–3), 147–155 (2006).
[18]
S. Chaguetmi, F. Mammeri, M. Pasut, S. Nowak, H. Lecoq, P. Decorse, C. Costentin, S. Achour, and S. Ammar, “Synergetic Effect of CdS Quantum Dots and TiO2 Nanofibers for Photoelectrochemical Hydrogen Generation,” J. Nano. Res. 15 (12), 10 (2013).
[19]
N. Sobti, A. Bensouici, F. Coloma, C. Untiedt, and S. Achour, “Structural and photoelectrochemical properties of porous TiO2 nanofibers decorated with Fe2O3 by sol-flame,” J. Nanopart. Res. 16, 2577 (2014).
[20]
L. Li, H. Dai, L. Feng, D. Luo, S. Wang, and X. Sun, “Enhance Photoelectrochemical Hydrogen-Generation Activity and Stability of TiO2 nanorod Arrays Sensitized by PbS and CdS Quantum Dots under UV-Visible Light,” Nano. Res. Let. 10 (1), 48 (2015).
[21]
Y. Li, F. Gao, L. Zhao, Y. Ye, J. Liu, and Y. Tao, “Reversing CdS and ZnS Preparation Order on Electrospun TiO2 and Its Effects on Photoelectrochemical Property,” Micro & Nano Letters 11, 731–733 (2016).
[22]
J. Krysa, M. Zlamal, S. Kment, M. Brunclikova, and Z. Hubicka, “TiO2 and Fe2O3 Films for Photoelectrochemical Water Splitting,” Molecules 20 (1), 1046–1058 (2015).