Journal of Nanoscience and Nanoengineering
Articles Information
Journal of Nanoscience and Nanoengineering, Vol.1, No.3, Oct. 2015, Pub. Date: Sep. 1, 2015
Effect of Fractal Parameters on Response of Nanobeam: A Finite Element Approach
Pages: 162-170 Views: 4803 Downloads: 1190
Authors
[01] D. Dutta, Department of Mechanical Engineering, M. S. Institute of Technology, Kolkata, India.
[02] S. Bhattacharyya, Department of Aerospace Engineering, IIST, Thiruvananthapuram, Kerala, India.
[03] S. Sahoo, Department of Civil Engineering, Heritage Institute of Technology, Kolkata, India.
Abstract
Finite element analysis facilitates optimal design of MEMS/NEMS devices for reliability. The same is used here to analyze the effect of types of fractal rough surfaces on static response of nanobeams Three-dimensional rough surfaces are generated using modified two variable Weierstrass-Mandelbrot function with given fractal parameters. Beam with various fractal roughness are modelled to observe the variations in the bending stresses and displacements. The results of the analysis will be useful to designers to develop the most suitable geometry for nanostructures.
Keywords
Nanobeam, Roughness, Fractal, Finite Element Method
References
[01] B. Bhushan (Ed.) 2001 Macro and Microtribology of MEMS Materials, Modern Tribology Handbook, CRC Press, Boca Raton, FL, , pp. 1515–48.
[02] B. Bhushan 1999 Principles and Applications of Tribology, Wiley, New York.
[03] B. Bhushan (Ed.) 1998 Tribology Issues and Opportunities in MEMS, Kluwer Academic Publisher, Dordrecht, The Netherlands.
[04] B. Bhushan 1999 Handbook of Micro/Nanotribology, 2nd Editon, CRC Press, Boca Raton, FL.
[05] B. Bhushan 2001Modern Tribology Handbook, Vol.1—Principles of Tribology; Vol. 2—Materials, Coatings, and Industrial Applications, CRC Press, Boca Raton, FL.
[06] K.E. Peterson 1982 Silicon as a mechanical material, Proc. IEEE 70 420-57.
[07] S.J ohansson, J.A. Schweitz, L.J. Tiren 1988 Fracture testing of silicon microelements in-situ in a scanning electron microscope, J. Appl. Phys. 63, 4799-4803.
[08] F. Ericson, J.A. Schweitz 1990 Micromechanical fracture strength of silicon, J. Appl. Phys. 68, 5840-5844.
[09] C.J. Wilson, A. Ormeggi, M. Narbutovskih 1996 Fracture testing of bulk silicon microcantilever beams, J. Appl. Phys. 79, 2386-93.
[10] C.J. Wilson, P.A. Beck, 1996 Fracture testing of bulk silicon microcantilever beams subjected to a side load, J. Microelectromech. Syst. 5, 142-150.
[11] S. Sundararajan, B. Bhushan 2002 Development of AFM-based techniques to measure mechanical properties of nanoscale structures, Sensors and Actuators A 101,338-51.
[12] T. Hsu, N. Sun, Residual stresses/strains analysis of MEMS, in: M. Laudon, B. Romanowicz (Eds.), Proceedings of the International Conference on Modeling and Simulation of Microsystems, Semiconductors, Sensors and Actuators, Computational Publications, Cambridge, MA,1998, pp. 82–87.
[13] J.H. Fabian, L. Scandella, H. Fuhrmann, R. Berger, T. Mezzacasa, Ch. Musil, J. Gobrecht, E. Meyer, Ultramicroscopy 82 (2000) 69.
[14] A. Kolpekwar, C. Kellen, R.D. Blanton, Fault model generation for MEMS, in: M. Laudon, B. Romanowicz (Eds.), Proceedings of the International Conference on Modeling and Simulation of Microsystems, Semiconductors, Sensors and Actuators, Computational Publications, Cambridge, MA, 1998, pp. 111–116.
[15] H.A. Rueda, M.E. Law, Modeling of strain in boron-doped silicon cantilevers, in: M. Laudon, B. Romanowicz (Eds.), Proceedings of the International Conference on Modeling and Simulation of Microsystems, Semiconductors, Sensors and Actuators, Computational Publications Cambridge MA, 1998, pp. 94–99.
[16] M. Heinzelmann, M. Petzold 1994 FEM analysis of microbeam bending experiments using ultra micro indentations, Comput. Mater. Sci. 3, 169-76.
[17] B. Bhushan and G.B. Agrawal 2002 Stress analysis of nanostructures using a finite element method, Nanotechnology 13, 515-23.
[18] R.J. Roark, Roark’s Formulas for Stress and Strain, 6th Edition, McGraw-Hill, New York, 1989.
[19] P. Sahoo and N. Ghosh 2007 Finite element contact analysis of fractal surfaces, J.Appl.Phys.40, 4245-52.
[20] W Yan and K Komvopoulos 1998 Contact analysis of elastic-plastic fractal surfaces, J.Appl.Phys.84, 3617-24.
[21] M Ausloos and D H Berman D H 1985 A multivariate Weierstrass-Mandelbrot function, Proc. R. Soc. Lond. A 400, 331-50.
[22] M V Berry and Z V Lewis 1980 On the Weierstrass-Mandelbrot fractal function, Proc. R. Soc. Lond. A 370, 459-84.
[23] D Blackmore and J G Zhou 1998 Fractal analysis of height distributions of anisotropic rough surfaces, Fractals 6, 43-58.
[24] S Bhattacharyya and S Sahoo 2014 Stress analysis of trapezoidal nanobeam with roughness, International Journal of Materials, Manufacturing and Design, 2(1-2), 29-44.
[25] S Bhattacharyya, S Sahoo and P Sahoo 2014 Finite element based analysis of nanobeam with fractal roughness, International Journal of Applied Engineering Research, 9(26), 8803-8806.
600 ATLANTIC AVE, BOSTON,
MA 02210, USA
+001-6179630233
AIS is an academia-oriented and non-commercial institute aiming at providing users with a way to quickly and easily get the academic and scientific information.
Copyright © 2014 - American Institute of Science except certain content provided by third parties.