Articles Information
Journal of Nanoscience and Nanoengineering, Vol.1, No.3, Oct. 2015, Pub. Date: Aug. 27, 2015
Adsorption of Dyes from Simulated Textile Wastewater onto Modified Nanozeolite from Coal Fly Ash
Pages: 148-161 Views: 4440 Downloads: 2287
Authors
[01]
Patricia Cunico, Chemical and Environmental Center, Nuclear and Energy Research Institute, São Paulo, Brazil.
[02]
Anu Kumar, Land and Water, Commonwealth Scientific Industrial Research Organization, Glen Osmond, S. A. Australia.
[03]
Denise A. Fungaro, Chemical and Environmental Center, Nuclear and Energy Research Institute, São Paulo, Brazil.
Abstract
Nanozeolite synthesized from fly ash and modified with hexadecyltrimethylamonium (HDTMA) was used as adsorbent to remove dyes - Solophenyl Navy (SN) and Solophenyl Turquoise (ST) and their hydrolysed forms Solophenyl Navy Hydrolysed (SNH) and Solophenyl Turquoise Hydrolysed (STH), respectively from simulated textile wastewater. The HDTMA-modified nano-zeolite (ZMF) was characterized by X-ray fluorescence spectrometry, X-ray diffraction and scanning electron microscopy. The ZMF presented negative charge probably due to the formation of a partial bilayer of HDTMA on exchangeable active sites on the external surface of unmodified nanozeolite. Initial dye concentration, contact time and equilibrium adsorption were evaluated. Two kinetic models including pseudo first and second order equations were analysed to understand the adsorption process. It was found that the adsorption kinetics of SN and ST; and their hydrolysed forms followed a pseudo second-order model. Langmuir, Freundlich and Temkin models were applied to describe the adsorption isotherms. Adsorption of the dyes was best described by the Langmuir model. Acute toxicity of the leached of ZMF to a waterflea, Ceriodaphnia dubia was determined, and the results showed an EC50value of 35%. In order to identify what substances were causing the observed toxicity for the leached of ZMF, Toxicity Identification Evaluation tests (TIE) were realized and showed that the baseline acute effects were significantly reduced after manipulation with Solid-Phase Extraction (SPE) and Ethylenediaminetetraacetic acid (EDTA). The data from the present study suggest that ZMF could be used as an adsorbent in the removal of Solophenyl dyes from wastewater.
Keywords
Coal Fly Ash, Surfactant-Modified Nanozeolite, Phthalocyanine, Direct Dye, Ceriodaphnia dubia, Copper-Complex
References
[01]
Kant R. Textile dyeing industry an environmental hazard. Natual Sci. 2012, 4(1), 22-26.
[02]
Carneiro P. A., Pupo N. R. F., Zanoni, M. V. B. Homogeneous photodegradation of C. I. Reactive Blue 4 using a photo-Fenton process under artificial and solar irradiation. Dye. Pigment. 2007 74(1), 127-132.
[03]
Melo C. Remoção de cor de efluente de tinturaria em leito poroso. Dissertation. State University of Campinas, 2007.
[04]
Schimmel D., Fagnani K. C., Oliveira dos Santos J.B., Barros M. A. S. D., Silva, A.E. Adsorption of turquoise blue QG reactive dye on commercial activated carbon in batch reactor: Kinetics and equilibrium studies. Braz. J. Chem. Eng. 2010, 27(2), 289-298.
[05]
Perkins WS. Textile coloration and finishing. Durham, North Carolina: Carolina Academic Press; 1996.
[06]
Shore J. Cellulosic dyeing. Society of Dyes and Colourist, United Kingdom, 1995.
[07]
Bae J-S., Harold S., Freeman H. S. Aquatic toxicity evaluation of cooper-complexed direct dyes to the Daphnia magna. Dyes Pigm. 2007, 73, 126-132.
[08]
Chattopadhyay S. N, Pan N. C., Day A. Reuse of reactive dyes for dyeing of jute fabric. Bioresour. Technol. 2006, 97(1), 77–83.
[09]
Gupta V. K., Carrott P. J. M., Ribeiro C., Suhas M. M. L. Low-Cost Adsorbents: Growing Approach to Wastewater Treatment - A Review. Crit. Rev. Env. Sci. Technol. 2009, 39(10), 783-842.
[10]
Bhatnagar A., Sillanpää M.. Utilization of agro-industrial and municipal waste material as potential adsorbents for water treatment: A review. Chem. Eng. J. 2010, 144(2), 227-296.
[11]
Kyzas G. Z., Lazaridis, N. K. Reactive and basic dyes removal by sorption onto chitosan derivatives. J. Colloid Interface Sci. 2013, 331(1), 32–39.
[12]
Querol X., Moreno N., Umanã J.C., Alastuey A., Hernandez E., López-Soler A. Plana, F. Synthesis of zeolites from coal fly ash: an overview. Int. J. Coal Geol. 2002, 50(1-4), 413-423.
[13]
Rayalu S. S., Bansiwal A. K., Mesheram S. U., Labhsetwar N., Devotta S. Fly ash based zeolite analogues: versatile materials for energy and environmental conservation. Catal. Sur. Asia. 2006, 10(2), 74-88.
[14]
Bertolini T. C. R., Izidoro J. C., Magdalena C. P., Fungaro D. A. Adsorption of Cristal violet dye from aqueous solution onto zeolites from coal fly and bottom ashes. Orbital. 2013, 5(3), 179-191.
[15]
Fungaro D. A., Magdalena C. P. Adsorption of reactive red 198 from aqueous solution by organozeolite from fly ash: Kinetics and equilibrium studies. In. J. Chen. Environ. Eng. Sis. 2012, 3(3), 74-38.
[16]
Fungaro D. A., Borrely S. I., Carvalho T. E. M. Surfactant modified zeolite from cyclone ash as adsorbent for removal of reactive orange 16 from aqueous solution. Am. J. Environ. Prot. 2013, 1(1), 1-9.
[17]
Cunico P., Fungaro D. A., Magdalena C. P. Adsorção do reativo preto 5 de solução aquosa por zeólita de cinzas de carvão: estudos cinéticos e de equilíbrio. Periódico Tche Chímica. 2011, 8 (16), 17-24.
[18]
Fungaro D. A., Borrely S. I. Síntese e caracterização de zeólita de cinzas de carvão modificada por surfactante catiônico. Cerâmica. 2012, 58(345), 77-83.
[19]
Guan H., Bestland E., Zhu C., Zhu H., Albertsdottir D., Hutson J., Simmons C. T., Ginic Markovic M., Tao X., Ellis A. V. Variation in performance of surfactant loading and resulting nitrate removal among four selected natural zeolites, J. Hazard. Mater. 2010, 183(1-3), 616-621.
[20]
Li Z. H. Sorption kinetics of hexadecyltrimethylammonium on natural clinoptilolite. Langmuir. 1999, 15(19), 6438-6445.
[21]
Li Z. H., Bowman R. S. Sorption of perchloroethylene by surfactant-modified zeolite as controlled by surfactant loading. Environ. Sci. Technol. 1998, 32(15), 2278-2282.
[22]
Rozic M., Sipusic D. I., Sekovanic L., Miljanic S., Curkovic L., Hrenovic J. Sorption phenomena of modification of clinoptilolite tuffs by surfactant cations. J. Colloid. Interface. Sci. 2009, 331(2), 295-3019.
[23]
Haggerly G. M., Bowman R.S. Sorption of chromate and other inorganic anions by organo-zeolite. Environ. Sci. Technol. 1994, 28(3), 452-458
[24]
Bowman R. S. Applications of surfactant-modified zeolites to environmental remediation. Micropor. Mesopor. Mat. 2003, 61(1-3), 43-56.
[25]
Silva G. L., Silva V. L., Vieira M. G. A., Silva M. G. C. Solophenyl navy blue dye removal by smectite clay in a porous bed column. Adsorpt. Sci. Technol. 2009, 27(9), 861-875.
[26]
Pinheiro A. S. Avaliação da toxicidade e genotoxicidade dos corantes azo reativos Remazol Preto B e Remazol Alaranjado 3R e da eficiência da radiação com feixe de elétrons na redução da cor e efeitos tóxicos. Thesis, University of São Paulo, 2011.
[27]
Henmi T. Synthesis of hydroxi-sodalite (“zeolite”) from waste coal ash. Soil Sci. Plant Nutr. 1987, 33(3), 517-521.
[28]
Blanchard G., Maunaye M., G. Martin. Removal of heavy metals from waters by means of natural zeolites. Water Res. 1984, 18(12), 1501–1507.
[29]
Ho Y. S., McKay G. Sorption of dye from aqueous solution by peat. Chem. Eng. J. 1998, 70(2), 115-124.
[30]
Ho Y. S., McKay G. Pseudo-second order model for sorption processes. Process. Biochem. 1999, 34(5), 451-465.
[31]
Langmuir I. Adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40(9), 1361 – 1403.
[32]
Freundlich H. Adsorption in solution. Phys. Chemie. 1906, 57, 384 – 420.
[33]
Tempkin M. I., Pyzhev V. Kinetics of ammonia synthesis on promoted iron catalyst. Acta Phys. Chim. USSR. 1940, 12, 327-356.
[34]
Ho Y-S. Selection of optimum sorption isotherm. Carbon, 2004, 42(10), 2115-2116.
[35]
Querol X., Moreno N., Umaña J. C., Alastuey A., Hernandez E., Lopez-Soler A., Plana F. Synthesis of zeolites from coal fly ash: an overview, Int. J. Coal. Geol. 2002, 50, 413–423.
[36]
Wang S., Wu H. Environmental-benign utilisation of fly ash as low-cost adsorbents, J. Hazard. Mat. 2006, B136, 482–501.
[37]
USEPA. Methods for measuring the acute toxicity of effluents and receiving water to freshwater and marine organisms. Environmental Protection Agency, USA, 2002.
[38]
Hamilton M.A., Russo R. C., Thurson, R. V. Trimmed Spearman-Karber method for estimating median lethal concentrations in toxicity bioassays. Environ. Sci. Technol. 1997, 11(7), 714-719.
[39]
USEPA. Methods for Aquatic Toxicity Identification Evaluation, Phase I Toxicity Characterization Procedures. Environmental Protection Agency, USA, 1997.
[40]
Montero N., Belzunce-Segarra M. J., Gonzalez J-L., Menchaca I., Garmendia J. M., Etxebarria, N., Nieto O., Franco J. Application of Toxicity Identification Evaluation (TIE) procedures for characterization and management of dredged harbor sediments. Mar. Pollut. Bull. 2013, 71, 259-268.
[41]
Lin J., Zhan Y., Zhu Z., Xing Y. Adsorption of tannic acid from aqueous solution onto surfactant-modified zeolite. J. Hazard. Mater. 2011, 193, 102-111.
[42]
Murayama N., Yamamoto H., Shibata J. Mechanism of zeolite synthesis from fly ash by alkali hydrothermal reaction. Int. J. Min. Met. Mater. 2002, 64(1), 1-17.
[43]
Izidoro J. C., Fungaro D. A., dos Santos F. S., Wang S. Characteristics of Brazilian coal fly ashes and their synthesized zeolites. Fuel Process. Technol. 2012, 97(1), 38-44 (a).
[44]
Izidoro J. C., Fungaro D. A., Wang S. Zeolite synthesis from Brasilian coal fly ash and removal of Zn2+ and Cd2+ from water. Adv. Mat. Reserch. 2012, 356-360, 1900-1908 (b).
[45]
Paprocki, A. Zeolite synthesis from coal ash targeting its use in acid drainage decontamination mine. Dissertation, Pontifical Catholic University of Rio Grande do Sul, 2009.
[46]
Sijakova-Ivanova T., Panov Z., Blazev K., Zajkova-Paneva V. Investigation of fly ash havy metals content and physic chemical properties from thermal power plant. Int. J. Eng. Sci. Technol. 2011, 3(12), 8219-8225.
[47]
Depoi F.S. Desenvolvimento de métodos analíticos para a caracterização dos carvões brasileiros e suas cinzas. Dissertation, Federal University of Rio Grande do Sul, 2007.
[48]
Cardoso A.M. Síntese integrada em condições brandas de zeólita 4A e NaP1, a partir de cinzas de carvão, para uso em detergente e descontaminação ambiental. Thesis. Catolic University of Rio Grande do Sul, 2012.
[49]
Leyva-Ramos R., Jacobo-Azuara A., Dias-Flores P. E., Guerreiro-Coronado R. M., Mendonza-Barron J., Berber-Mendonza M. S. Adsorption of chromium (VI) from an aqueous solution on a surfactant-modified zeolite. Colloids Surf. A. 2008, 330(1), 35-41.
[50]
Gottilieb A., Shaw C., Smith A., Wheatley A., Forsythe S. The toxicity of textile reactive azo dyes after hydrolysis and decolourization. J. Biotechnol. 2003, 101(1), 49-53.
[51]
Azizian S. Kinetic models of sorption: a theoretical analysis J. Colloid Interface Sci. 2004, 276(1), 47-52.
[52]
Giles C. H., Macewan T. H., Nakhua S. N., Smith D. Studies in adsorption. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measumrement of specific surface areas of solids. J. Chem. Soc. London. 1960, 3973-3993.
[53]
Giles C. H., Smith D., Huitson A. A general treatment and classification of the solute adsorption isotherm. I. Theoretical. J. Colloid Interface Sci. 1974, 47(3), 755–765.
[54]
Carvalho T. E. M., Fungaro D. A., Izidoro J. C. Adsorption of reactive dyes Orange 16 from aqueous solution onto synthetic zeolite. Quim. Nova. 2011, 33(2), 358-363.
[55]
Garcia M. T., Ribosa I., Guindulain T., Sanches-Leal J., Vives-Rego J. Fate and effect of monoalkyl quaternary ammonium surfactants in the aquatic environment. Environ. Pollut. 2007, 111(1), 169-175.
[56]
Sandbacka M., Christianson I., Isomaa B. The acute toxicity of surfactants on fish cells, Daphnia magna and fish—a comparative study. Toxicol. In Vitro. 2000, 14(1), 61–68.
[57]
Mark U., Soilbé J. Analysis of the ecetoc aquatic toxicity (EAT) database V: The relevance of Daphnia magna as a representative test species. Chemosphere. 1998, 36(1), 155-166.
[58]
Montgomery J. H. Groundwater chemicals desk reference. CRS Press, New York, 1955.
[59]
Fikirdesici S., Altinddag A., Ozdemir E. Invertigation of acute toxicity of cadmium-arsenic mixtures do Daphnia magna with toxic unit approach. Turk J. Zoll. 2010, 36(4), 543-550.
[60]
Borgmann U., Cove R., Loveridge C. Effect of metals on the biomass production kinetics of freshwater copepods. Can. J. Fish. Aquat. Sci. 1980, 37, 567–575.
[61]
Spehar R. L., Fiandt J. T. Acute and chronic effects of water quality criteria-based metal mixtures on three aquatic species. Environ. Toxicol. Chem. 1986, 5(10), 917-931.
[62]
Golding L. A., Timperly M.H., Evans C.W. Non-lethal responses of the freshwater snail Potamopyrgus ntipodarum to dissolved arsenic. Environ. Monit. Assess. 1997, 47(3) 239–254.
[63]
USEPA, Methods for Aquatic Toxicity Identification Evaluation, Phase I Toxicity Characterization Procedures, Environmental Protection Agency, USA, 1991.
[64]
Cooper N. L., Bidwell J. R., Kumar A. Toxicity of copper, lead and zinc mixtures to Ceriodaphnia dubia and Daphnia carinata. Ecol. Environ. Sci. 2009, 72(5), 1523-1528.
[65]
Holleman, A. F., Wiberg, E. Inorganic Chemistry. New York: Academic Press, 2001.