Journal of Environment Protection and Sustainable Development
Articles Information
Journal of Environment Protection and Sustainable Development, Vol.6, No.3, Sep. 2020, Pub. Date: Oct. 28, 2020
Modeling of Electron Density of the Equatorial F1 Layer in the Low Latitude Region
Pages: 66-71 Views: 1134 Downloads: 252
Authors
[01] Ayokunnu Olalekan David, Physics Department, The Polytechnic, Ibadan, Nigeria.
[02] Ogunsola Oluseyi Enitan, Physics Department, University of Ibadan, Ibadan, Nigeria.
[03] Dare Oluseye David, Physics Department, Dominion University Ibadan, Ibadan, Nigeria.
Abstract
The electron density of the equatorial F1 layer (±30°) of the low latitude region is modeled in this work. The digisonde data used is of the year 2016, a year of low solar activity with sunspot number, Rz (20) of 30. The data used is from seven (7) stations North and South of the region of the low latitude. The stations used are: Guam (13.4°N, 144.5°S dip 12.8°), America; Sanya (18.3°N, 109.5°S dip 25.0°) China; Boa Vista (16.1°N, 22.8°S dip 22.1°) Cape Verde; Campo Grande (20.5°S, 54.6°W dip 22.3°); Cachoeira (12.6°S, 39°W dip -28.0°); Fortaleza (3°S, 38.6°W dip -15.8°) all in Brazil and Jicamarca (12.0°S, 76.9°W dip -0.5°) Peru. The F1 layer was observed in each of the stations used and found to be present between 0700-1800 local time. The percentage occurrence of the layer at 0700 and 1800 local time is 1 and 3% respectively, while that of 0900-1700 local time exceeds 85%. The solar dependency of the layer is characterized and latitudinal variability of the layer is also observed. The index was observed to be in the region of during the Equinox months and during the Solstice months. The prediction from this new model was found to be of order for the minimum error and for the maximum error and found quite close to the observed value at the various stations in the low latitude region.
Keywords
Electron Density, Equatorial Ionosphere, Low Latitude and Low Solar Activity
References
[01] Adeniyi, J. O (1997). Equatorial F1characteristics and the internationalreference ionosphere model, Radio Science, 31 (4), pp 893-897.
[02] Ducharme, E. D, Petrie, L. E and Eyfring, A. (1973). A methodfor predicting the F1 layer critical frequencybased on Zurichsmooth number, Radio Science, 8 (10), 837-839.
[03] Bilitza, D. (1990). International Reference Ionosphere, National Space science data centre report, 90-92, GreenbeltMaryland.
[04] Titheridge, J. E (1996). Direct allowancefor the effect of photoelectrons in ionospheric modeling, J. Geophys. Res. 101, 357-369.
[05] Solomon, S. C., Bailey, S. M and Woods, (2001). Effect of soft solar X-ray on the lower atmosphere, Geophys. Res. Lett., 28 2149-2152.
[06] Sojka, J. J, Jensen, J., David, M., Schunk, R. W., Wood, T andEparvier, F (2013). Modeling the Eand F1 regions: using observations as the solar irradiance driver, Journal of Geophysical research: Space physics, 118, 5379-5391, doi:10.1002/jgra.50480.
[07] Somoye, E. O, Eugene, O. O, Ogungbe, A. S, Ogabi, C. O, Ogwala, A., Ometan, O. O, Adeniji-Adele, R. A, Iheonu, E. E, Oluyo, K. S and Sode, T. A (2017). Day-to-day variability of critical frequency of F1 layer. American Journalof sustainable development. 2 (4), 30-35.
[08] Zhang, S. R, Huang, X. Y, Yuan-zhi and Radicella, S. M (1993). A Physical model for one dimension and time independent ionosphere, description of the model, Ann. Geophys. 36 (5-6) 105-110.
[09] Zhang, S. R and Huang, X. Y (1995). A numerical study of the ionospheric profile for mid latitudes, Ann. Geophys.13, 551-557.
[10] Zhang, S. R, Shi, J. K, Wang, X, Radicella, S. M (2004). Ionospheric variability at low latitude station: Hainan, China, J. Adv. Space Res. 34, 1860-1868.
[11] Shchepkin, L. A and Vinitsky, A. V (1982). A new parameters of F1 layer, INAG Bull. Boulder Colorado 37, 5-6.
[12] Mosertde Gonzalez, Radicella, S. M, Adeniyi, J. O, Ezquer, R. G and Jadur, C. (1991). Electron density in the intermediate heights for low latitude stations: Observations and models, Ad. Space Res. 27 (1) 13-16.
[13] MosertdeGonzalez and Radicella, S. M (1987). An empirical model of the F1 intermediate layer true-height characteristics, Advances in Space Research, 7 (6) 65.
[14] Lastovicka, J. (2002). Monitoring and forecasting of ionospheric space weather- effect of geomagnetic storm, Journal of Atm. and Solar Terr. Physics, 64, 697-705.
[15] Adeniyi, J. O and Radicella (1998). Electron density and height at F1 region minimum gradient at high solar activity for an equatorial station, radio science, 33 (5), 1387-1393.
[16] Beynon, W. J. G and Brown, G. M (1959). Geomagnetic distortion of E region, Journal of Atm. Ter. 14-50.
[17] Ratclifee, J. A. (1972). An Intoduction to ionosphere andMagnetosphere. Cambridge press London. 55-58.
[18] Akchurin, A. S (2016). Ionospheric radio, IEE electromagnetic waves series 31, London, UK, Peter peregrius Ltd, The Institute of Electrical Engineering, ISBN 0-86341-186-X.
[19] Volland, H. (1984). Atmospheric electrodynamics, Berlin, Springer Verlag, 45 (6) 189-220.
[20] Reinisch, B. W and Haung, X. (1996a). Vertical electron density profile from Digisonde network. Adv. Space Res. 18 (6), 121-129.
[21] Ayokunnu, O. D, Ogunsola, O. E and Adeniyi, J. O (2018). Modeling of the height of occurrence of the low latitude F1 layer, International Journal of trend in research and development, 5 (4), 129-132.
600 ATLANTIC AVE, BOSTON,
MA 02210, USA
+001-6179630233
AIS is an academia-oriented and non-commercial institute aiming at providing users with a way to quickly and easily get the academic and scientific information.
Copyright © 2014 - American Institute of Science except certain content provided by third parties.