International Journal of Chemical and Biomolecular Science
Articles Information
International Journal of Chemical and Biomolecular Science, Vol.4, No.4, Dec. 2018, Pub. Date: 16, 2019
Treatment Technologies for Wastewater from Cosmetic Industry - A Review
Pages: 69-80 Views: 2556 Downloads: 2794
Authors
[01] Bello Lukman Abidemi, Department of Chemistry, Federal University of Technology, Akure, Nigeria.
[02] Omoboye Adekunle James, Department of Chemistry, Federal University of Technology, Akure, Nigeria.
[03] Abiola Temitope Oluwatosin, Department of Chemistry, Federal University of Technology, Akure, Nigeria.
[04] Oyetade Joshua Akinropo, Department of Chemistry, Federal University of Technology, Akure, Nigeria.
[05] Udorah Daniel Oraeloka, Department of Agricultural and Environmental Engineering, Federal University of Technology, Akure, Nigeria.
[06] Ayeola Eyitayo Racheal, Department of Pharmacy, University of Lagos, Akoka, Nigeria.
Abstract
The increasing need for a green and eco-friendly environment necessitates a search for treatment processes to mitigate the environmental degradation attendant upon the discharge of wastewater from Cosmetic industries. The proliferation of Cosmetic industries as a means to fulfil the insatiable need of man for personal beautification necessitate this review since their effluent is inevitably discharged into the environment. This present review is aimed at the understanding composition of wastewater from different cosmetic industries for the purpose of proffering a suitable treatment technology. The review highlights the composition of various cosmetic industries, their environmental impacts as well as a myriad of treatment technologies and their optimum operating conditions.
Keywords
Treatment Technologies, Wastewater, Cosmetic Industry
References
[01] Regulation (EC) No 1223/2009 of the European Parliament and of the Council of 30 November 2009 on cosmetic products. Available online: http://eurex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:342:0059:0209:en: PDF (accessed on 15 July 2017).
[02] Kosma, C. I.; Lambropoulou, D. A.; Albanis, T. A. Occurrence, and removal of PCBs in municipal and hospital wastewaters in Greece. J. Hazard. Mater2010, 179 (1–3), 804–817.
[03] Liu, J. L.; Wong, M. H. Pharmaceuticals and personal care products (PPCPs): a review on environmental contamination in China. Environ. Int2013, 59, 208–224.
[04] Muthanna, T. M.; Plósz, B. G. The impact of hospital sewage discharge on the assessment of the environmental risk posed by priority pharmaceuticals: hydrodynamic modeling and measurements. 11th International Conference on Urban Drainage, Edinburgh, Scotland, UK. 2008.
[05] Brausch, J. M.; Rand, G. M. A review of personal care products in the aquatic environment: Environmental concentrations and toxicity. Chemosphere2011, 82, 1518–1532.
[06] Jan Bogacki; Jeremi Naumczyk; Piotr Marcinowski; Małgorzata Kucharski. Treatment of cosmetic wastewater using physicochemical and chemical methods. Chemik2011, 65, 2, 94-97.
[07] Puyol, D.; Monsalvo, V. M.; Mohedano, A. F.; Sanz, J. L.; Rodriguez, J. J. Cosmetic wastewater treatment by upflow anaerobic sludge blanket reactor. Journal of Hazardous Materials2011, 185, 1059–1065.
[08] Melo, E. D; Mounteer, A. H; Henrique, S. L.; Cibele, B. B.; Izabella, M. F. C. Toxicity identification evaluation of cosmetics industry wastewater. Journal of Hazardous Materials 2013, 244– 245, 329– 334.
[09] Ternes, T. A.; Joss, A.; Siegrist, H. Scrutinizing pharmaceuticals and personal care products in wastewater treatment. Environ. Sci. Technol. 2004, 38, 392A–399A.
[10] Jardak, K.; Drogui, P.; Daghrir, R. Surfactants in aquatic and terrestrial environment: Occurrence, behavior, and treatment processes. Environ. Sci. Pollut. Res. 2016, 23, 3195–3216.
[11] G. Apfel, Pollution control and abatement in the cosmetic industry, CTFA Cosmet. J. 4 (1972) 28–32.
[12] U. Ritter, Environmental pollution aspects at plants for cosmetics production, Wachse 115 (1989) 383–386. A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions Parag.
[13] R. Gogate*, Aniruddha B. Pandit Chemical Engineering Section, M. U. I. C. T., Matunga, Mumbai 400019, India Accepted 4 April 2003.
[14] O. S. Amuda, A. O. Alade, Coagulation/flocculation process in the treatment of abattoir wastewater, Desalination 196 (2006) 22–31.
[15] J. Duan, J. Gregory, Coagulation by hydrolyzing metal salts, Advances in Colloid and Interface 100–102 (2003) 475–502.
[16] M. Plattes, A. Bertrand, B. Schmitt, J. Sinner, F. Verstraeten, J. Welfring, Removal of tungsten oxyanions from industrial wastewater by precipitation, coagulation and flocculation processes, Journal of Hazardous Materials 148 (2007) 613–615.
[17] G. Li, J. Gregory, Flocculation and sedimentation of high turbidity waters, Water Research 25 (1991) 1137–1143.
[18] F. El-Goharya, A. Tawfika, U. Mahmoud National Research Center, Water Pollution Research Department, 2009. El-Behouth St., Dokki, Cairo, Egypt.
[19] Amuda, A. Alade Department of Pure and Applied Chemistry, Department of Chemical Engineering, LadokeAkintola University of Technology, Ogbomoso, 210001, Received 9 June 2005; accepted 3 October 2005.
[20] P. Jarvis, B. Jefferson, J. Gregory, S. A. Parsons, A review of floc strength and breakage, Water Research 39 (2005) 3121–3137.
[21] I. A. Amoo, O. O. Ajayi, K. O. Ipinmoroti, O. S. Amuda, Performance optimization of coagulants/flocculants in the treatment of effluent from soap/detergent industry, in: S. I. Ahonkhai (Ed.), Proceedings of the 27th International Conference Chemical Society of Nigeria, Mindex Press, Benin City, Nigeria, 2004, pp. 415–420, Nigeria.
[22] O. S. Amuda, I. A. Amoo, Coagulation/flocculation process and sludge conditioning in beverage industrial wastewater treatment, Journal of Hazardous Materials 141 (2007) 778–783.
[23] H. I. Abdel-Shafy, O. Abo-El-Wafa, M. A. Azzam, Chemical treatment of industrial effluent, in: International Conference. Heavy Metals in the Environment, New Orleans, 1987, p. 452.
[24] M. B. Vanotti and P. G. Hunt, Trans. ASAE, 42 (1999) 1833–1840.
[25] K. Zhu, M. Gamal El-Din, A. K. Maawad, and D. Bromley, Environ. Technol., 25 (2004) 1177–1187.
[26] J. Szpak, D. Woods and K. Bouchard, Water Qual. Res, J. Can., 31 (1996) 51–64.
[27] Aguilar, E. Lefebvre, M. Y. Rahni and B. Legube, Environ. Technol., 17 (1996) 381–387.
[28] Bautista P., Mohedano A. F., Casas J. A., Zazo J. A., Rodriguez J. J., (2010), Oxidation of cosmetic wastewaters with H2O2 using a Fe/g-Al2O3 catalyst, Water Science and Technology, 61, 1631-1636.
[29] Bautista P., Mohedano A. F., Gilarranz M. A., Casas J. A., Rodriguez J. J., (2007), Application of Fenton oxidation to cosmetic wastewaters treatment, Journal of Hazardous Materials, 143, 128-134.
[30] Perdigón-Melón J. A., Carbajo J. B., Petre A. L., Rosal R., García-Calvo E., (2010), Coagulation-Fenton coupled treatment for ecotoxicity reduction in highly polluted industrial wastewater, Journal of Hazardous Materials, 181, 127-132.
[31] Ovejero, J. L. Sotelo, F. Martinez, L. Gordo, Novel heterogeneous catalysts in the wet peroxide oxidation of phenol, Water Sci. Technol. 44 (2004) 153–160.
[32] W. Najjar, S. Azabou, S. Sayadi, A. Ghorbel, Screening of Fe–BEA catalysts for wet hydrogen peroxide oxidation of crude olive mill wastewater under mild conditions, Appl. Catal. B: Environ. 88 (2009) 299–304.
[33] J. Barrault, M. Abdellaoui, C. Bouchoule, A. Majeste´, J. M. Tatiboue¨ t, A. Louloudi, N. Papayannakos, N. H. Gangas, Catalytic wet peroxide oxidation over mixed (Al–Fe) pillared clays, Appl. Catal. B-Environ. 27 (2000) 225–230.
[34] M. N. Timofeeva, S. Ts. Khankhasaeva, S. V. Badmaeva, A. L. Chuvilin, E. B. Burgina, A. B. Ayupov, V. N. Panchenko, A. V. KIlukova, Appl. Catal. B: Environ. 59 (2005) 243–248.
[35] J. Barrault, C. Bouchoule, K. Echachoui, N. Frini-Srasra, M. Trabelsi, F. Bergaya, Appl. Catal. B: Environ. 15 (1998) 269.
[36] M. Abdellaoui, J. Barrault, C. Bouchoule, N. Frini-Srasra, F. Bergaya, J. Chim. Phys. 96 (1999) 419.
[37] F. Luck, Catal. Today 27 (1996) 195. M. Abdellaoui, Thesis, University of Poitiers, 14 September1999.
[38] Rey, M. Faraldos, J. A. Casas, J. A. Zazo, A. Bahamonde, J. J. Rodriguez, Catalytic wet peroxide oxidation of phenol over Fe/AC catalysts: Influence of iron precursor and activated carbon surface, Appl. Catal. B-Environ. 86 (2009) 69–77.
[39] J. A. Zazo, J. A. Casas, A. F. Mohedano, J. J. Rodriguez, Catalytic wet peroxide oxidation of phenol with a Fe/active carbon catalyst, Appl. Catal. B-Environ. 65 (2006) 261–268.
[40] N. Al-Hayek, J. P. Eymery, M. Dore´, Catalytic oxidation of phenols with hydrogen peroxide, Water Res. 19 (1985) 657–666.
[41] N. Al-Hayek, M. Dore´, Oxidation of phenols in water by hydrogen peroxide on alumina supported iron, Water Res. 24 (1990) 973–982.
[42] Cuzzola, M. Bernini, P. Salvadori, A preliminary study on iron species as heterogeneous catalysts for the degradation of linear alkylbenzene sulfonic acids by H2O2, Appl. Catal. B-Environ. 36 (2002) 231–237.
[43] F. C. Moreira, J. Soler, A. Fonseca, I. Saraiva, R. A. R. Boaventura, E. Brillas, V. J. P. Vilar.
[44] Incorporation of electrochemical advanced oxidation processes in multistage treatment system for sanitary landfill leachate, Water Res. 81 (2015) 375-387.
[45] J. R. Domínguez, T. González, P. Palo, J. Sánchez-Martín, M. A. Rodrigo, C. Sáez,
[46] Electrochemical degradation of a real pharmaceutical effluent, Water Air Soil Poll. 233 (2012)2685-2694.
[47] H. Olvera-Vargas, N. Oturan, E. Brillas, D. Buisson, G. Esposito, M. A. Oturan, Electrochemical advanced oxidation for cold incineration of the pharmaceutical ranitidine: Mineralization pathway and toxicity evolution, Chemosphere 177 (2014) 644-651.
[48] C. A. Martínez-Huitle, A. De Battisti, S. Ferro, S. Reyna, M. Cerro-López, M. A. Quiro, Removal of the pesticide methamidophos from aqueous solutions by electrooxidation using Pb/PbO2, Ti/SnO2, and Si/BDD electrodes, Environ. Sci. Technol. 42 (2008) 6929-6935.
[49] N. Oturan, E. D. van Hullebusch, H. Zhang, L. Mazeas, H. Budzinski, K. Le Menach, M. A. Oturan, Occurrence and removal of organic micropollutants in landfill leachates treated by electrochemical advanced oxidation processes, Environ. Sci. Technol. 49 (2015) 12187-12196.
[50] S. Garcia-Segura, E. Brillas, Mineralization of the recalcitrant oxalic and oxamic acids by electrochemical advanced oxidation processes using a boron-doped diamond anode, Water Res. 45 (2011) 2975-2984.
[51] S. Garcia-Segura, E. Brillas, L. Cornejo-Ponce, R. Salazar, Effect of the Fe3+/Cu2+ ratio on the removal of the recalcitrant oxalic and oxamic acids by electro-Fenton and solar photo electro-Fenton, Sol. Energy 124 (2016) 242-253.
[52] P. Grafias, P. Xekoukoulotakis, D. Mantzavinos, E. Diamadopoulos, Pilot treatment of olive pomace leachate by vertical-flow constructed wetland and electrochemical oxidation: An efficient hybrid process, Water Res. 44 (2010) 2773-2780.
[53] S. Garcia-Segura, E. Brillas, Advances in solar photo electro-Fenton: Decolorization and mineralization of the Direct Yellow 4 diazo dye using an autonomous solar pre-pilot plant, Electrochim. Acta 140 (2014) 384-395.
[54] L. Feng, E. D. van Hullebusch, M. A. Rodrigo, G. Esposito, M. A. Oturan, Chem. Eng. J. 228 (2013) 944-964. 69.
[55] C. A. Martínez-Huitle, M. A. Rodrigo, I. Sirés, O. Scialdone, Chem. Rev. 115 (2015) 13362-13407.
[56] E. G. Janzen, Y. Kotake, R. D. Hinton, Free Radical Biol. Med. 12 (1992) 169-173.
[57] E. Brillas, J. A. Garrido, R. M. Rodríguez, C. Arias, P. L. Cabot, F. Centellas, Port. Electrochim. Acta 26 (2008) 15-46.
[58] Y. Deng, J. D. Englehardt, Waste Manage. 27 (2007) 380-388.
[59] Sergi Garcia-Segura a, Joey D. Ocon b, Meng Nan Chong Electrochemical Oxidation Remediation of Real Wastewater Effluents - A review *aLaboratorid'Eletroquímica de Materials i Medi Ambient, Universitat de Barcelona, Barcelona, Spain 2017.
[60] L.-C. Chiang, J.-E. Chang, T.-C. Wen, Water Res. 29 (1995) 671-678.
[61] A. Y. Bagastyo, D. J. Batstone, I. Kristiana, W. Gernjak, C. Joll, J. Radjenovic, Water Res. 46 (2012) 6104-6112.
[62] M. Panizza, G. Cerisola, Chem. Rev. 109 (2009) 6541-6569.
[63] C. Boxall, G. H. Kelsall, Hypochlorite Electrogeneration. 2. Thermodynamics and Kinetic model of the Anode Reaction Layer, Symposium on Electrochemical Engineering and the Environment, Institution of Chemical Engineers, Rugby, United Kingdom, 1992, pp. 59-70.
[64] C. A. Martínez-Huitle, E. Brillas, Appl. Catal. B: Environ. 87 (2009) 105-145.
[65] M. Panizza, G. Cerisola, Chem. Rev. 109 (2009) 6541-6569.
[66] C. Zhang, J. Wang, T. Murakami, A. Fujishima, D. Fu, Z. Gu, J. Electroanal. Chem. 638 (2010) 91-99.
[67] R. J. Bigda, Consider Fenton's chemistry for wastewater treatment, Chem. Eng. Prog. 91 (1995) 62–66.
[68] N. San Sebastian, J. F´ıguls, X. Font, A. Sanchez, Pre-oxidation of an extremely polluted industrial-wastewater by the Fenton's reagent, J. Hazard. Mater. B 101 (2003) 315–322.
[69] Schreiber M. E. Bahr J. M. (2002). Nitrate-enhanced bioremediation of BTEX contaminated groundwater: parameter estimation from natural-gradient tracer experiments. J. Contam. Hydrol. 55:29–56.
[70] Suflita J. M, Caldwell M. E. (2000) Detection of phenol and benzoate as intermediates of anaerobic benzene biodegradation under different terminal electron-accepting conditions, Environ. Sci. Technol. 34:1216–1220.
[71] Sedlak, D. L., Andren, A. W., 1991. Oxidation of chlorobenzene with Fenton's reagent. Environ. Sci. Technol. 25, 777.
[72] F. J. Rivas, F. J. Beltran, O. Gimeno, J. Frades, Treatment of olive oil mill wastewater by Fenton's reagent, J. Agric. Food Chem. 49 (2001) 1873–1880.
[73] B. G. Kwon, D. S. Lee, N. Kang, J. Yoon, Characteristics of p-chlorophenol oxidation by Fenton's reagent, Water Res. 33 (1999) 2110–2118.
[74] N. San Sebastian, J. F´ıguls, X. Font, A. Sanchez, Pre-oxidation of an extremely polluted industrial-wastewater by the Fenton's reagent, J. Hazard. Mater. B 101 (2003) 315–322.
[75] Gallard, H., De Laat, J., Legube, B., 1998. Influence du pH sur la vitssed'oxydation de composes organiques par FeIIy H2O2. Mechanismes reactionnelsetmodelization. New J. Chem. 263.
[76] Lin, S. H., Lo, C. C., 1997. Fenton process for treatment of designing wastewater. Water Res. 31, 2050.
[77] Benitez, F. J., Beltran-Heredia, J., Real, F. J., Acero, J. L., 1999a. Enhancement of the ozonation of wine distillery wastewaters by anaerobic pretreatment. Bioprocess. Eng. 21, 459.
[78] M. Kitts, C. D. Adams, G. T. Daigger, The effect of Fenton's reagent pretreatment on the biodegradability of a nonionic surfactant, Water Res. 33 (1999) 2561–2568.
[79] X. Wang, Y. Song, J. Mai, Combined Fenton oxidation and aerobic biological processes for treating a surfactant wastewater containing abundant sulfate, Journal of Hazardous Materials 160 (2008) 344–348.
[80] Ebrahiem E. Ebrahiem, Mohammednoor. N. Al-Maghrabi and Ahmed R (2013). Mobarki Chemical Engineering Department, Faculty of Engineering, Jazan University, Saudi Arabia removal of organic pollutants from industrial wastewater by applying photo-Fenton oxidation technology. Faculty of Engineering, King Abdul-Aziz University, Jeddah, Saudi Arabia.
600 ATLANTIC AVE, BOSTON,
MA 02210, USA
+001-6179630233
AIS is an academia-oriented and non-commercial institute aiming at providing users with a way to quickly and easily get the academic and scientific information.
Copyright © 2014 - American Institute of Science except certain content provided by third parties.