International Journal of Chemical and Biomolecular Science
Articles Information
International Journal of Chemical and Biomolecular Science, Vol.2, No.1, Feb. 2016, Pub. Date: Jan. 12, 2016
Antioxidant Activity of Table Olives as Influenced by Processing Method
Pages: 8-14 Views: 2601 Downloads: 1869
Authors
[01] Soraya Mettouchi, Laboratory of Applied Biochemistry, Faculty of Life and Natural sciences, University of Bejaia, Bejaia, Algeria.
[02] Mostepha Bachir Bey, Laboratory of Applied Biochemistry, Faculty of Life and Natural sciences, University of Bejaia, Bejaia, Algeria.
[03] Abderezak Tamendjari, Laboratory of Applied Biochemistry, Faculty of Life and Natural sciences, University of Bejaia, Bejaia, Algeria.
[04] Hayette Louaileche, Laboratory of Applied Biochemistry, Faculty of Life and Natural sciences, University of Bejaia, Bejaia, Algeria.
Abstract
Table olives are a traditional product and one of the most important components of the Mediterranean diet. The first study aimed to the determination of the antioxidant substances in different preparations of Algerian table olive varieties (Sigoise and Azerradj) at three ripening stages and the investigation of their antioxidant potential is hereby reported. Fruits of Sigoise (Bejaia and Ain-Defla) and Azerradj cultivars were harvested at three ripening stages; they were processed following the Spanish style for green olives, including debittering (with alkali at 1.5%), washing and fermentation in brine (5%); turning olives were directly fermented in brine (2%) for three months and black olives were processed following the Greek style including fermentation in dry salt for 60 days. Phenolic extracts were obtained with methanol. Total phenolics, ortho-diphenols, flavonoids and anthocyans were determined and the antioxidant activity of extracts was evaluated by measuring antiradical activity and reducing power. Turning olives prepared naturally in brine are richer in total phenolics; Sigoise variety (Ain-Defla) showed the highest content in total phenols (4284.40 mg/100g), O-diphenols (261.09 mg/100g), flavonoids (71.03 mg/100g) and anthocyans (1681.23 mg/100g). The antioxidant activity of extracts followed the order: turning olives in brine > Greek style black olives> Californian black oxidized olives> Spanish style green olives. Sigoise variety (Ain-Defla) exerts the best antiradical activity (3.69 g QE/100g) and reducing power (1.85 g QE/100g). Consumption of turning olives of Sigoise variety from Ain-Defla, prepared naturally in brine is considered, to offer a high intake of antioxidants and so a health benefit for the prevention of many diseases linked to oxidative stress.
Keywords
Olea europaea, Antioxidant Activity, Phenolics, Processing
References
[01] Amiot M.J., Fleuriet A., Macheix J.J. (1986). J. Agric. Food Chem. 34: 823-826.
[02] Balatsouras, G. (1997). Encyclopédie mondiale de l’olivier. Conseil Oléicole International, pp. 295-342.
[03] Ben Othman N., Roblain D., Chammen N., Thonart P., Hamdi M. (2009). Food Chem. 116: 662–669.
[04] Berger M.M. (2005). Clin. Nutr. 24: 172-183.
[05] Bianchi G. (2003). Eur. J. Lipids Sci. Technol. 105: 229- 242.
[06] Blekas G., Vassilakis C., Harizans C., Tsimidou M., Boskou D.G. (2002). J. Agric. Food Chem. 50: 3688-3692.
[07] Boskou G., Salta F.N., Chrysostomou S., Mylona A., Chiou A., Andrikopoulos N.K. (2006). Food Chem. 94: 558- 564.
[08] Brenes M. (2005). Grasas y Aceites. 56: 188-191.
[09] Brenes-Balbuena M., Garcia-Garcia P., Garrido Fernandez A. (1992). J. Agric. Food Chem. 40: 1192-1196.
[10] Brescia M. A., Pugliese T., Hardy E., Sacco A. (2007). Food Chem. 105: 400–404.
[11] Charoenprasert S., Michell A. (2012). J. Agric. Food Chem. 60: 7081-7095.
[12] Codex Stan 66 (1987). «Norme Codex pour les olives de table ». Collaboration du Conseil Oléicol International et du Codex Alimentarius 1981 (Rev. 1- 1987): 1-21.
[13] Djeridane A., Yousfi M., Nadjemi B., Boutassouna D., Stocker P., Vidal N. (2006). Food Chem. 97: 654-660.
[14] Dortoglou V. G., Mamalos A., Makris D.P. (2006). Food Chem. 99: 342-349.
[15] El Khaloui M., Nouri A. (2007). Transfert Technol. Agric. 152 : 1-4.
[16] Fernandez-Diez M.J. (1979). J. Texture Stud. 10 : 103-116.
[17] Fu L., Xu B.-T., Xu X.-R., Gan R.-Y., Zhang Y., Xia E.Q., Li H.B. (2011). Food Chem. 29: 345–350.
[18] Gandul-Rojas B., Roca M., Mínguez-Mosquera M.I. (2004). J. Plant Physiol. 161: 499–507
[19] Garcıa-Alonso M., de Pascual-Teresa S., Santos-Buelga C., Rivas-Gonzalo J.C. (2004). Food Chem. 84: 13-18.
[20] Gillani A., Khan A., Ghayur M. (2006). Nutr. Res.26: 277- 283.
[21] IOC (International Olive Council) (2013). Market Newsletter, No 76 – Production d’olives de table:1-6.
[22] Iqbal S., Bhanger M.I., Anwar F. (2007). LWT- Food Sci. Technol. 40: 361-367.
[23] Kia H., Hafidi A. (2014). LWT- Food Sci. Technol. 57: 663-670.
[24] Lesage-Meessen L., Navarro D., Maunier S., Sigoillot J-C., Lorquin J., Delattre M., Simon J-L., Asther M., Labat M. (2001). Food Chem. 75: 501-507.
[25] Mafra I., Barros A.S., Coimbra M. A. (2006). Carbohydr. Polym. 65: 1-8.
[26] Malik N.S., Bradford J.M. (2006). Sci. Hortic. 110: 274-278.
[27] McDonald S., Prenzler P.D., Antolovich M., Robards K. (2001). Food Chem. 73, 73-84.
[28] Nadour M., Michaud P., Moulti-Mati F. (2012). Applied Biochem. Biotechnol. 167: 1802-1810.
[29] Panagou E. Z. (2006). LWT. Food Sci. Technol. 39: 322-329.
[30] Panagou E. Z., Schillinger U., Franz C. M.A.P., Nychas G.J.E. (2008). Food Microbiol. 25: 348-358.
[31] Parinos C.S., Stalikas C.D., Giannopoulos Th.S., Pilidis G.A. (2007). J. Hazardous Materials. 145, 339–343.
[32] Patumi M., Andria R., Marsilio V., Fontanazza G., Morelli G., Lanza B. (2002). Food Chem. 77: 27–34.
[33] Piga A., Del Caro A., Pinna I., Agabbio M. (2005). LWT- Food Sci. Technol. 38: 425-429.
[34] Piscopo A., De Bruno A., Zappia A., Poiana M. (2014). LWT- Food Sci. Technol. 58: 49-54.
[35] Romero C., Brenes M., Yousfi K., Garcia P., Garcia A. (2004). J. Agric. Food Chem. 52: 1973-1979.
[36] Ryan D., Robards K., Lavee S. (1999). Internat. J. Food Sci. Technol. 37: 523-526.
[37] Sahan Y., Cansev A., Gulen H. (2013). Food Sci. Biotechnol. 22: 613-620.
[38] Saija A., Ucella N. (2001). Trends Food Sci. Technol. 11: 357-363.
[39] Soler Rivas C., Espin J.C., Wichers H.J. (2000). J. Sci. Food Agric. 80: 1013-1023.
[40] Son S., Lewis B.A. (2002). J. Agric. Food Chem. 50: 468-472.
[41] Soni M.G., Burdock G.A., Christian M.S., Bitler C.M., Crea R. (2006). Food Chem. Toxicol. 44: 903–915.
[42] Sousa A., Casal S., Bento A., Malheiro R., Oliveira P.P., Pereira J.A. (2011). Molecules. 16: 9025-9040.
[43] Sousa A., Ferreira I.C.F.R., Barros L., Bento A., Pereira J. (2008). LWT, Food Sci.Technol. 41(4): 739-745.
[44] Tognetti R., Andria R., Lavini A., Morelli G. (2006). Eur. J. Agron. 25: 356–364.
[45] Toscano, G., Colarieti M. L., Greco G. (2003). Enzyme Microbial Technol. 33: 47-54.
[46] Tovar J., Romero P., Girona J., Motilva M. J. (2002). J. Sci. Food Agric. 82: 892- 898.
[47] Tuck K.L., Hayball P.J. (2002). J. Nutr. Biochem. 13: 636- 644.
[48] Vinha A.F. et al. (2005). Food Chem. 89: 561-568.
[49] Visiolli F., Galli C. (1998). J. Agric. Food Chem. 46: 4292- 4296.
[50] Zhan Y., Hong-Dong C., Yao Y-J. (2006). J. Integr. Plant Biol. 48: 1365-1370.
[51] Ziogas V., Tanou G., Molassiotis A., Diamantidis G., Vasilakakis M. (2010). Food Chem. 120: 1097-1103.
600 ATLANTIC AVE, BOSTON,
MA 02210, USA
+001-6179630233
AIS is an academia-oriented and non-commercial institute aiming at providing users with a way to quickly and easily get the academic and scientific information.
Copyright © 2014 - American Institute of Science except certain content provided by third parties.