International Journal of Biomedical and Clinical Sciences
Articles Information
International Journal of Biomedical and Clinical Sciences, Vol.6, No.4, Dec. 2021, Pub. Date: Oct. 15, 2021
A Study on Consequences of Anthropogenic Stress in Bats: Emergence of Nipah Virus
Pages: 120-128 Views: 1050 Downloads: 209
Authors
[01] Mohammad Rakibul Alam, Department of Molecular Medicine, Kyungpook National University, Daegu, Republic of Korea.
[02] Sharmin Akther, Department of Public Health, North South University, Dhaka, Bangladesh.
[03] Mohammad Nazmul Hosen, Faculty of Medicine, Chattogram Medical Collage, Chattogram, Bangladesh.
Abstract
Emerging infectious diseases are the concerning challenge in recent years. A large number of emerging zoonotic viruses like Marbug virus, Hendra virus, Ebola virus, severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory coronavirus (MERS-CoV), SARS-CoV-2 and their corresponding natural reservoirs are identified during last decades. Among many infectious agents, Nipah virus (NiV) outbreaks have got much attention due to its extreme fatalities especially in South-East Asia. NiV is a significant bat-borne paramyxovirus that causes yearly outbreak of fatal encephalitis in one of the most populous region of the earth. A decades of research established that bats are the well identified reservoirs of Nipah virus, a bird’s eye provides us a clear insight about several anthropogenic factors that are responsible for driving bats to spread out this specific virus as well as other fatal viruses. In this review, we have focused on the anthropogenic stress mediated disturbances of natural balanced state of host-parasite, which results in the seasonal outbreak of Nipah virus mediated diseases.
Keywords
Anthropogenic Stress, Glucocorticoid, Immune Suppression, Viral Load, Emergence
References
[01] Epstein, J. H., Anthony, S. J., Islam, A., Kilpatrick, A. M., et al. 2020. Nipah virus dynamics in bats and implications for spillover to humans. PNAS, 117 (46), 29190-29201.
[02] Chong, H. T., Abdullah, S., Tan, C. T. 2009. Nipah virus and bats. Neurology Asia, 14, 73 – 76.
[03] Letko, M., Seifert, S. N., Olival, K. J., Plowright, RK., et al. 2020. Bat-borne virus diversity, spillover and emergence. Nat. Rev. Microbiol. 18, 461-471.
[04] Calisher, C. H., Childs, J. E., Field, H. E., Holmes, K. V., Schountz, T. 2006. Bats: important reservoir hosts of emerging viruses. Clinical Microbiology Reviews, 19, 531-545.
[05] Baker, M. L., Schountz, T., Wang, L. F. 2012. Antiviral Immune Responses of Bats: A Review. Zoonoses and Public Health. doi: 10.1111/j.1863-2378.2012.01528.x
[06] McKee, C. D., Islam, A., Luby, S. P., Salje, H., et al. 2021. The ecology of Nipah virus in Bangladesh; A nexus of land-use change and opportunistic feeding behavior in bats. Viruses. 13, 169.
[07] Cappelle, J., Hoem, T., Hul, V., Furey, N., et al. 2020. Nipah virus circulation at human-bat interfaces, Cambodia. Bull World Health Organ, 98, 539-547.
[08] Wacharapluesadee, S., Ghai, S., Duengkae, P., Manee-Orn, P., et al. 2021. Two decades of one health surveillance of Nipah virus in Thailand. One Health Outlook, 3 (12), 1-14.
[09] Sendow, I., Ratnawati, A., Taylor, T., Adjid, R. M. A., et al. 2013. Nipah virus in the fruit Bat Pteropus vampyrus in Sumatera, Indonesia. PLOSE ONE, 8 (7), e67544.
[10] Plowright, R. K., Becker, D. J., Crowley, D. E., Washburne, A. D., et al. 2019. Prioritizing surveillance of Nipah virus in India. E PLoS Negl. Trop. Dis, 13 (6), e0007393.
[11] Li, Y., Wang, J., Hickey, A. C., Zhang, Y., et al. 2008. Antibodies to Nipah or Nipah-like viruses in bats, China. Emerging Infectious Diseases, 14, 1974-6.
[12] Hayman, D. T., Suu-Ire, R., Breed, A. C., McEachern, J. A., et al. 2008. Evidence of Henipavirus infection in West African Fruit bats. PLoS ONE, 3 (7): e2739.
[13] Patz, J. A., Daszak, P., Tabor, G. M., Aguirre, A. A., et al. 2004 Unhealthy landscapes: policy recommendations on land use change and infectious disease emergence. Environmental Health Perspectives, 112, 1092–1098.
[14] Jonathan, H., Epstein, Field, H. E., Luby, S., Pulliam, J. R., Daszak, P. 2006. Nipah virus: impact, origins, and causes of emergence. Current Infectious Disease Report, 8, 59-65.
[15] Jones, K. E., Bininda-Emonds, O., Gittleman, J. 2005. Bats, clocks, and rocks: diversification patterns in chiroptera. Evolution, 59, 2243-55.
[16] Wong, S., Lau, S., Woo, P., Yuen, K. U. 2007. Bats as a continuing source of emerging infections in humans. Review in Medical Virology, 17, 67–91.
[17] Teeling, E. C., Springer, M. S., Madsen, O., Bates, P., et al. 2005. A molecular phylogeny for bats illuminates biogeography and the fossil record. Science, 307, 580–584.
[18] Jepsen, G. L. 1966. Early eocene bat from Wyoming. Science, 154, 1333-1339.
[19] Neuweiler, G. 2000. The Biology of the Bats. Oxford University Press: Oxford.
[20] Wang, L. F., Walker, P. J., Poon, L. L. M. 2011. Mass extinctions, biodiversity and mitochondrial function: are bats ‘special’ as reservoirs for emerging viruses? Current Opinion in Virology, 1, 649–657.
[21] Charles, H. C., Childs, J. E., Field, H. E., Holmes, K. V., Schountz, T. 2006. Bats: Important Reservoir Hosts of Emerging Viruses. Clinical Microbiology Reviews, 19, 531-45.
[22] Austad, S. N. 2005. Diverse aging rates in metazoans: targets for functional genomics. Mechanisms of Ageing and Development, 126, 43–49.
[23] Taylor, D. J., Leach, R. W., Bruenn, J. 2010. Filoviruses are ancient and integrated into mammalian genomes. BMC Evolutionary Biology, 10, 193.
[24] Chu, D. K., Poon, L. L., Guan, Y., Peiris, J. S. 2008. Novel astroviruses in insectivorous bats. Journal of Virology, 82, 9107-9114.
[25] Alcami, A. 2003. Viral mimicry of cytokines, chemokines and their receptors. Nature Review Immunology, 3, 36–50.
[26] Bowie, A. G., Zhan, J. & Marshall, W. L. 2004. Viral appropriation of apoptotic and NF-B signaling pathways. Journal of Cellular Biochemistry, 91, 1099–1108.
[27] Grandvaux, N., TenOever, B, R., Servant, M. J. Hiscott, J. 2002. The interferon antiviral response: from viral invasion to evasion. Current Opinion in Infectious Diseases, 15, 259–267.
[28] Mogensen, T. H., Melchjorsen, J., Malmgaard, L., Casola, A., Paludan, S. R. 2004. Suppression of proinflammatory cytokine expression by herpes simplex virus type 1. Journal of Virology, 78, 5883–5890.
[29] Weber, F., Kochs, G., Haller, O. 2004. Inverse interference: how viruses fight the interferon system. Viral Immunology, 17, 498–515.
[30] Katze, M. G., He, Y., Gale, M. G. 2002. Viruses and interferon: a fight for supremacy. Nature Review Immunology, 2, 675–687.
[31] Rodriguez, J. J., Cruz, C. D., Horvath, C. M. 2004. Identification of the nuclear export signal and STAT-binding domains of the Nipah virus V protein reveals mechanisms underlying interferon evasion. Journal of Virology, 78, 5358–5367.
[32] Shaw, M. L., Cardenas, W. B., Zamarin, D., Palese, P., Basler, C. F. 2005. Nuclear localization of the Nipah virus W protein allows for inhibition of both virus- and Tolllike receptor 3-triggered signaling pathways. Journal of Virology, 79, 6078–6088.
[33] Poole, E., He, B., Lamb, R. A., Randall, R. E., Goodbourn, S. 2002. The V proteins of simian virus 5 and other paramyxoviruses inhibit induction of interferon-β. Virology, 303, 33–46.
[34] Naniche, D., Yeh, A., Eto, D., Manchester, M., et al. 2000. Evasion of host defenses by measles virus: wild-type measles virus infection interferes with induction of α/β interferon production. Journal of Virology, 74, 7478–7484.
[35] Conzelmann, K. K. 2005. Transcriptional activation of α/β interferon genes: interference by nonsegmented negative-strand RNA viruses. Journal of Virology, 79, 5241–5248.
[36] Bryan, T., Christopher, E., Broder, C., Middleton, D. Wang, L. F. 2006. Hendra and Nipah viruses: different and dangerous. Nature Reviews Microbiology, 4, 23-35.
[37] Chua, K. B., Goh, K. J., Wong, K. T., Kamarulzaman, A., et al. 1999. Fatal encephalitis due to Nipah virus among pig-farmers in Malaysia. Lancet, 354, 1257–9.
[38] Banerjee, A., Baker, M. L., Kulcsar, K., Misra, V. 2020. Novel insights into immune systems of bats. Front. Immunol. 11: 26.
[39] Goh, K. J., Tan, C. T., Chew, N. K., Tan, P. S., et al. 2000. Clinical features of Nipah virus encephalitis among pig farmers in Malaysia. The New England Journal of Medicine, 342, 1229–1235.
[40] Anderson, D. W., Keith, J. O. 1980. The human influence on seabird nesting success: conservation implications. Biological Conservation, 18, 65-80.
[41] Yarmoloy, C., Bayer, M., Geist, V. 1988. Behavior responses and reproduction of mule deer, Odocoileus hemionus, does following experimental harassment with an all-terrain vehicle. Canadian Field-Naturalist, 102, 425-429.
[42] Prange, S., Gehrt, S. D., Wiggers, E. P. 2004. Influences of anthropogenic resources on raccoon (Procyon lotor) movements and spatial distribution. Journal of Mammalogy, 85, 483-490.
[43] Johnson C. J., Boyce M. S., Case R. L., H. Dean Cluff, H. D., et al. 2005. Cumulative effects of human developments on Arctic wildlife. Wildlife Monographs, 160, 1-36.
[44] Müllner, A., Linsenmair, K. E., Wikelski, M. 2004. Exposure to ecotourism reduces survival and affects stress response in hoatzin chicks (Opisthocomus hoazin). Biological Conservation, 118, 549-558.
[45] Ditchkoff, S. S., Saalfeld, S. T., Gibson, C. J. 2006. Animal behavior in urban ecosystems: modifications due to human-induced stress. Urban Ecosystems, 9, 5-12.
[46] Padgett, D. A., Glaser R. 2003. How stress influences the immune response. Trends in Immunology, 24, 444-448.
[47] Bradley, C. A., Altizer, S. 2007. Urbanization and the ecology of wildlife diseases. Trends in Ecology and Evolution, 22, 97-102.
[48] Schweithelm, J., Glover, D. 1999. Causes and Impacts of the Fires. In: Indonesia's Fires and Haze: The cost of catastrophe (Ed. By Glover D. & Jessup, T.) chapter 1: p. 1-13. Singapore: Seng Lee Press Pte Ltd.
[49] Chua, K. B. 2003. Nipah virus outbreak in Malaysia. Journal of Clinical Virology, 26, 265-275.
[50] Fernside, P. M. 1990. Fire in the tropical rain forest of the Amazon basin. In: Golammer JG. Fire in the Tropical Biota, Ecosystem Processes and Global Challenges. pp. 106-16. Springer, Berlin: Springer press.
[51] Setzer, A. W., Pereira, M. C. 1991. Amazonia biomass burnings in 1987 and an estimate of their tropospheric emissions. Ambio, 20, 19-22.
[52] Tang, Y., Naoki, K., Akio, F., Awang, M. 1996. Light reduction by regional haze and its effect on simulated leaf photosynthesis in a tropical forest of Malaysia. Forest Ecology and Management, 89, 205-11.
[53] Chua, K. B., Chua, B. H., Wang, C. W. 2002. Anthropogenic deforestation, El Nino and the emergence of Nipah virus in Malaysia. The Malaysian Journal of Pathology, 24, 15–21.
[54] Longcore, T., Rich, C. 2004. Ecological light pollution. Frontiers in Ecology and the Environment, 2, 191–198.
[55] Stone, E. L., Jones, G., Harris, S. 2009. Street Lighting Disturbs Commuting Bats, Current Biology, 19, 1123–1127.
[56] Fure, A. 2006. Bats and lighting. The London Naturalist, 85, 20.
[57] Holland, R. A., Thorup, K., Vonhof, M. J., Cochran, W. W., Wikelski, M. 2006. Navigation: bat orientation using Earth's magnetic field. Nature, 444, 702.
[58] McGuire, L. P., Fenton, M. B. 2010. Hitting the wall: light affects the obstacle avoidance ability of free-flying little brown bats (Myotis lucifugus). Acta chiropterologica, 12, 247-250.
[59] Kuijper, D. P. J., Schut, J., van Dullemen, D., Toorman, H., et al. 2008. Experimental evidence of light disturbance along the commuting routes of pond bats (Myotis dasycneme). Lutra, 51, 37-49.
[60] Mann, S. L., Steidl, R. J., Dalton, V. M. 2002. Effects of cave tours on breeding Myotis velifer. Journal of Wildlife Management, 66, 618-624.
[61] Downs, N. C., Beaton, V., Guest, J., Polanski, J., et al. 2003. The effects of illuminating the roost entrance on the emergence behaviour of Pipistrellus pygmaeus. Biological Conservation, 111, 247-252.
[62] Boldogh, S., Dobrosi, D., Samu, P. 2007. The effects of the illumination of buildings on house-dwelling bats and its conservation consequences. Acta Chiropterologica, 9, 527-534.
[63] Racey, P. A., Swift, S. M. 1985. Feeding ecology of Pipistrellus pipistrellus (Chiroptera: Vespertilionidae) during pregnancy and lactation. I. Foraging behaviour. Journal of Animal Ecology, 54, 205-215.
[64] Dubourg-Savage, M-J, Bach, L., Rodrigues, L. 2009. Bat mortality at wind farms in Europe. Presentation at 1st International Symposium on Bat Migration, Berlin.
[65] Durr, T., Bach, L. 2004. Bat deaths and wind turbines-a review of current knowledge, and of the information available in the database for Germany. Bremer Beitrage fur Naturkunde und Naturschutz, 7, 253-264.
[66] Johnson, G. D., Perlik, M. K., Erickson, W. P., Strickland, MD. 2004. Bat activity, composition and collision mortality at a large wind plant in Minnesota. Wildlife Society Bulletin, 32, 1278-1288.
[67] Arnett, E. B., Brown, W. K. & Erickson, W. P. et al. 2008. Patterns of bat fatalities at wind energy facilities in North America. Journal of Wildlife Management, 72, 61-78.
[68] Horn, J., Arnett, E. B. & Kunz, T. H. 2008. Behavioural responses of bats to operating wind turbines. Journal of Wildlife Management, 72, 123-132.
[69] Long, C. V., Flint, J. A., Lepper, P. A., Dible, S. A. 2009, Wind turbines and bat mortality: interactions of bat echolocation pulses with moving turbine rotor blades. Proceeding of the institute of Acoustics, 31, 185-192.
[70] Cryan, P. M., Brown. A. C. 2007. Migration of bats past a remote island offers clues toward the problem of bat fatalities at wind turbines. Biological Conservation, 139, 1-11.
[71] Wingfield, J. C., Romero, L. M. 2001. Adrenocortical responses to stress and their modulation in free-living vertebrates. In: Handbook of Physiology; Section 7: The Endocrine System, Coping with the Environment: Neural and Endocrine Mechanisms, vol. IV. (Ed. By B. S. McEwen & H. M. Goodman), pp. 211–234. Oxford Univ. Press, New York.
[72] Martin, L. B., Andreassi, E., Watson, W., Coon, C. 2011. Stress and Animal Health: Physiological Mechanisms and Ecological Consequences. Nature Education Knowledge, 3 (6), 11.
[73] Martin, L. B., Hopkins, W. A., Mydlarz, L. D., Rohr, J. R. 2010. The effects of anthropogenic global changes on immune functions and disease resistance. Annals of the New York Academy of Sciences, 1195, 129–148.
[74] Alam, M R., Ahsan, M. R., Kabir, R., Nayan, S. B., et al. 2021. Role of chronic psychological stress in microRNA biogenesis and microRNA regulated signal transduction pathways during cancer. International Journal of Biomedical and Clinical Science. 6(3), 80-91.
[75] Reeder, D. M., Kramer K. M. 2005. Stress in free-ranging mammals: integrating physiology, ecology, and natural history. Journal of Mammalogy, 86, 225–235.
[76] Reeder, D. A. M., Kosteczko, N. S., Kunz, T. H., Widmaier, E. P. 2004. Changes in baseline and stress-induced glucocorticoid levels during the active period in free-ranging male and female little brown myotis, Myotis lucifugus (Chiroptera: Vespertilionidae). General and Comparative Endocrinology, 136, 260-269.
[77] Klose, S. M., Smith, C. L., Denzel, A. J., Kalko, E. K. V. 2006. Reproduction elevates the corticosterone stress response in common fruit bats. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 192, 341-350.
[78] Lewanzik, D., Kelm, D. H., Greiner, S., Dehnhard, M., Christian, C. 2012. Voigt. Ecological correlates of cortisol levels in two bat species with contrasting feeding habits. General and Comparative Endocrinology, 177, 104–112.
[79] Busch, D. S., Hayward, L. S. 2009. Stress in a conservation context: A discussion of glucocorticoid actions and how levels change with conservation-relevant variables. Biological Conservation, 142, 2844–2853.
[80] Sapolsky, R. M., Romero, L. M., Munck, A. U. 2000. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocrinology. Review, 21, 55–89.
[81] Goymann, W., Wingfield, J. C. 2004. Allostatic load, social status and stress hormones: the costs of social status matter. Animal Behaviour, 67, 591–602.
[82] Ra°berg, L., Graham, L. A., Read, F. A. 2009. Decomposing health: tolerance and resistance to parasites in animals. Philosophical Transactions of the Royal Society B, 364, 37–49.
[83] Hsu, P. V. 2007. Nipah and Hendra Viruses. Emerging Viruses in Human Populations, DOI 10.1016/S0168-7069(06)16009-7.
[84] Luby, S. P., Rahman, M., Hossain, M. J., Blum, L. S., et al. 2006. Fodborne transmission of nipah virus, Bangladesh. Emerging Infectious Diseases, 12 (12), 1888-94.
[85] Anon. 2004. Nipah virus outbreak(s) in Bangladesh, January-April 2004. The Weekly Epidemiological Record, 79 (17), 168-71.
[86] Gurley, E. S., Montgomery J. M., Hossain, M. J., Bell, M., et al. 2007. Person-to-person transmission of Nipah virus in a Bangladeshi community. Emerging Infectious Diseases., 13 (7), 1031-7.
[87] Wang, L., Harcourt, BH., Yu, M., Tamin, A., et al. 2001. Molecular biology of Hendra and Nipah viruses. Microbes and Infection, 3, 279–287.
[88] Takeuchi, K., Kadota, S. I., Takeda, M., Miyajima, N., Nagata, K. 2003. Measles virus V protein blocks interferon (IFN)-alpha/beta but not IFN-gamma signaling by inhibiting STAT1 and STAT2 phosphorylation. FEBS Letters, 545, 177–182.
[89] Samuel, C. E. 2001. Antiviral actions of interferons. Clinical Microbiology Review, 14, 778–809.
[90] Park, M. S., Shaw, M. L., Muñoz-Jordan, J., Cros, J. F., et al. 2003. Newcastle disease virus (NDV)-based assay demonstrates interferon-antagonist activity for the NDV V protein and the Nipah virus V, W, and C proteins. Journal of Virology, 77, 1501–1511.
[91] Rodriguez, J. J., Parisien, J. P., Horvath, C. M. 2002. Nipah virus V protein evades alpha and gamma interferons by preventing STAT1 and STAT2 activation and nuclear accumulation. Journal of Virology, 76, 11476–11483.
[92] Mebatsion, T., Verstegen, S., De Vaan, L. T., Romer-Oberdorfer, A., Schrier, C. C. 2001. A recombinant newcastle disease virus with low-level V protein expression is immunogenic and lacks pathogenicity for chicken embryos. Journal of Virology, 75, 420–428.
[93] Patterson, J. B., Thomas, D., Lewicki, H., Billeter, M. A. Oldstone, M. B. 2000. V and C proteins of measles virus function as virulence factors in vivo. Virology, 267, 80–89.
[94] Yoneda, M., Guillaume, V., Sato, H., Fujita, K., et al. 2010. The Nonstructural Proteins of Nipah Virus Play a Key Role in Pathogenicity in Experimentally Infected Animals. PLoS ONE, 5 (9): e12709. doi: 10.1371/journal.pone.0012709.
[95] Bianchi, M., Meng, C., Ivashkiv, L. B. 2000. Inhibition of IL-2- induced Jak-STAT signaling by glucocorticoids. Proceedings of the National Academy of Sciences, 97, 9573-9578.
[96] Sarkar, S. K., Chakravarty, A. K. 1991. Analysis of immunocompetent cells in the bat, Pteropus giganteus: isolation and scanning electron microscopic characterization. Development & Comparative Immunology, 15, 423–430.
[97] Turmelle, A., Ellison, J., Mendonc, M., McCracken, G. 2010. Histological assessment of cellular immune response to the phytohemagglutinin skin test in Brazilian free-tailed bats (Tadarida brasiliensis). Journal of Comparative Physiology B., 180, 1155–1164.
[98] Chakravarty, A. K., Paul, B. N. 1987. Analysis of suppressor factor in delayed immune responses of a bat, Pteropus giganteus. Developmental & Comparative Immunology, 11, 649–660.
[99] Butler, J. E., Wertz, N., Zhao, Y., Zhang, S., et al. 2011. The two suborders of chiropterans have the canonical heavychain immunoglobulin (Ig) gene repertoire of eutherian mammals. Developmental & Comparative Immunology, 35, 273–284.
[100] McMurray, D. N., Stroud, J., Murphy, J. J., Carlomagno, M. A., Greer, D. L. 1982. Role of immunoglobulin classes in experimental histoplasmosis in bats. Development & Comparative Immunology, 6, 557-67.
[101] Seymour, C., Dickerman, R. W., Martin, M. S. 1978. Venezuelan encephalitis virus infection in neotropical bats. II. Experimental infections. American Journal of Tropical Medicine & Hygiene, 27, 297–306.
[102] Epstein, P. R. 1995. Emerging diseases and ecosystem instability: n ew threats to public health. American Journal of Public Health., 85 (2), 168-72.
[103] Rhyan, J. C., Spraker, T. R. 2010. Emergence of Diseases From Wildlife Reservoirs. Veterinary Pathology, 47 (1), 34-39.
[104] Daszak, P., Cunningham, A. A., Hyatt, A. D. 2001. Anthropogenic environmental change and the emergence of infectious diseases in wildlife. Acta Tropica, 78, 103–116.
[105] Ambat, A. S., Zubair, S. M., Prasad, N., Pundir. P., et al. 2019. Nipah virus: A review on epidemiological characteristics and outbreaks to inform public health decision making. Journal of Infection and Public Health. 12, 634-639.
600 ATLANTIC AVE, BOSTON,
MA 02210, USA
+001-6179630233
AIS is an academia-oriented and non-commercial institute aiming at providing users with a way to quickly and easily get the academic and scientific information.
Copyright © 2014 - American Institute of Science except certain content provided by third parties.