Articles Information
American Journal of Microbiology and Immunology, Vol.1, No.3, Nov. 2016, Pub. Date: Jan. 21, 2017
A Dumpy Review on Preservation of Methicillin-Resistant Staphylococcus aureus (MRSA) in the Laboratory
Pages: 32-39 Views: 3354 Downloads: 740
Authors
[01]
Abdulhadi Sale Kumurya, Department of Medical Laboratory Science, Faculty of Allied Health Sciences, Bayero University, Kano, Nigeria.
Abstract
Staphylococcus aureus has emerged as one of the most important human pathogens, and has over the past several decades, been a leading cause of hospital and community acquired infections. Methicillin-resistant strains of S. aureus (MRSA) were first recognized in the 1980’s as a major clinical and epidemiological problem. Hospitals are still facing this problem today. Preservation of strains in a microbiology laboratory is of great importance for quality control, teaching, and research. Freezing is a very common method of preservation and storage of microorganisms. Studies concentrate on the viability of the microorganisms after a certain storage period. Little attention is given to the influence of storage conditions on characteristics of the stored strains. This article describes methods, reagents, and equipment commonly utilized for the growth, maintenance, and characterization of S. aureus in the laboratory. It also explains the methods of identification of S. aureus as methicillin resistant strains, and generated a method for freezer stock of S. aureus for long-term storage. The Microbank Bacterial Preservation system (Pro-lab Diagnostics) is a well-known system for freezer storage of all kinds of microorganisms and is used in laboratories all over the world. Staphylococcus aureus is a Biosafety Level 2 (BSL-2) pathogen. Follow all appropriate guidelines and regulations for the use and handling of pathogenic microorganisms. No special precautions are necessary when working with MRSA.
Keywords
Staphylococcus aureus, MRSA, Growth, Strain Selection, Freezer Stock
References
[01]
Adhikari, R. P., Novick, R. P. (2008). Regulatory organization of the staphylococcal sae locus. Microbiology, 154: 949–959.
[02]
Araj, G. F., Talhouk, R. S., Simaan, C. J., Maasad, M. J. (1999). Discrepancies between mec A PCR and conventional tests used for detection of methicillin resistant Staphylococcus aureus. International Journal of Antimicrobial Agents, 11: 47–52.
[03]
Baba, T., Takeuchi, F., Kuroda, M., Yuzawa, H., Aoki, K. I., Oguchi, A., Nagai, Y., Iwama, N., Asano, K., Naimi, T., et al. (2002). Genome and virulence determinants of high virulence community-acquired MRSA. The Lancet, 359: 1819–1827.
[04]
Bae, T., Baba, T., Hiramatsu, K., Schneewind, O. (2006). Prophages of Staphylococcus aureus Newman and their contribution to virulence. Molecular Microbiology, 62: 1035–1047.
[05]
Bignardi, G. E., Woodford, N., Chapman, A., Johnson, A. P., Speller, D. (1996). Detection of the mec-A gene and phenotypic detection of resistance in Staphylococcus aureus isolates with borderline or low-level methicillin resistance. The Journal of antimicrobial chemotherapy, 37: 53–63.
[06]
Cassat J (2006). Transcriptional profiling of a Staphylococcus aureus clinical isolate and its isogenic agr and sarA mutants reveals global differences in comparison to the laboratory strain RN6390. Microbiology, 152: 3075–3090.
[07]
Charlebois, E. D., Bangsberg, D. R., Moss, N. J., Moore, M. R., Moss, A. R., Chambers, H. F., Perdreau-Remington, F. (2002). Population-based community prevalence of methicillin-resistant Staphylococcus aureus in the urban poor of San Francisco. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America. 34: 425–433.
[08]
Climo, M. W. (2009). Decreasing MRSA infections: an end met by unclear means. JAMA: the journal of the American Medical Association, 301: 772–773.
[09]
Diep, B. A., Gill, S. R., Chang, R. F., Phan, T. H., Chen, J. H., Davidson, M. G., Lin, F., Lin, J., Carleton, H. A., Mongodin, E. F., et al (2006). Complete genome sequence of USA300, an epidemic clone of community-acquired meticillin-resistant Staphylococcus aureus. The Lancet, 367: 731–739.
[10]
Dinges, M. M., Orwin, P. M., Schlievert, P. M. (2000). Exotoxins of Staphylococcus aureus. Clinical microbiology reviews. 13: 16–34.
[11]
Duthie, E. S., Lorenz, L. L. (1952). Staphylococcal coagulase; mode of action and antigenicity. Journal of general microbiology. 6: 95–107.
[12]
Dyke, K. (1969). Penicillinase production and intrinsic resistance to penicillins in methicillin-resistant cultures of Staphylococcus aureus. Journal of medical microbiology, 2: 261–278.
[13]
Emmett, M., Kloos, W. E. (1979). The nature of arginine auxotrophy in cutaneous populations of staphylococci. Journal of general microbiology, 110: 305–314.
[14]
Enright, M. C., Day, N. P., Davies, C. E., Peacock, S. J., Spratt, B. G. (2000). Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. Journal of clinical microbiology, 38: 1008–1015.
[15]
Foster, T. J. (2005). Immune evasion by staphylococci. Nature Reviews Microbiology, 3: 948–958.
[16]
Foster, T. J., Höök, M. (1998). Surface protein adhesins of Staphylococcus aureus. Trends in microbiology. 6: 484–488. Available at: http://ac.els-cdn.com/S0966842X98014000/1-s2.0-S0966842X98014000main.pdf?_tid=b5b27a903951069fdf4d8b989a649ca9&acdnat=1342717155_1dddd7a81cba19ba70448214d62dd903.
[17]
Gonzalez, B. E. (2005). Severe Staphylococcal Sepsis in Adolescents in the Era of Community-Acquired Methicillin-Resistant Staphylococcus aureus. Pediatrics. 115: 642–648.
[18]
Grundmeier M, Hussain M, Becker P, Heilmann C, Peters G, Sinha B (2004). Truncation of Fibronectin-Binding Proteins in Staphylococcus aureus Strain Newman Leads to Deficient Adherence and Host Cell Invasion Due to Loss of the Cell Wall Anchor Function. Infection and immunity, 72: 7155–7163.
[19]
Herbert, S., Ziebandt, A. K., Ohlsen, K., Schäfer, T., Hecker, M., Albrecht, D., Novick, R., Gotz, F. (2010). Repair of Global Regulators in Staphylococcus aureus 8325 and Comparative Analysis with Other Clinical Isolates. Infection and immunity, 78: 2877–2889.
[20]
Hiramatsu, K., Hanaki, H., Ino, T., Yabuta, K., Oguri, T., Tenover, F. C. (1997). Methicillin-resistant Staphylococcus aureus clinical strain with reduced vancomycin susceptibility. The Journal of antimicrobial chemotherapy, 40: 135–136.
[21]
Holden, M. T. G., Feil, E. J., Lindsay, J. A., Peacock, S. J., Day, N. P. J.., Enright, M. C., Foster, T. J., Moore, C. E., Hurst, L., Atkin, R. et al. (2004). Complete genomes of two clinical Staphylococcus aureus strains: evidence for the rapid evolution of virulence and drug resistance. Proceedings of the National Academy of Sciences of the United States of America, 101: 9786–9791.
[22]
Horsburgh, M. J., Aish, J. L., White, I. J., Shaw, L., Lithgow, J. K., Foster, S. J. B.(2002). Modulates Virulence Determinant Expression and Stress Resistance: Characterization of a Functional rsbU Strain Derived from Staphylococcus aureus 8325-4. Journal of Bacteriology, 184: 5457–5467.
[23]
Hultén, K. G., Kaplan, S. L., Lamberth, L. B., Slimp, K., Hammerman, W. A., Carrillo-Marquez, M., Starke, J. R., Versalovic, J., Mason, E. O. (2010). Hospital-Acquired Staphylococcus aureusInfections at Texas Children's Hospital, 2001–2007. Infection control and hospital epidemiology: the official journal of the Society of Hospital Epidemiologists of America, 31: 183–190.
[24]
International Working Group on the Classification of Staphylococcal Cassette Chromosome Elements (IWG-SCC, 2009) Classification of Staphylococcal Cassette Chromosome mec (SCCmec): Guidelines for Reporting Novel SCCmec Elements. Antimicrobial Agents and Chemotherapy, 53: 4961–4967.
[25]
Jenkins, T. C., McCollister, B. D., Sharma, R., McFann, K. K., Madinger, N. E., Barron, M., Bessesen, M., Price, C. S., Burman, W. J. (2009). Epidemiology of Healthcare-Associated Bloodstream Infection Caused by USA300 Strains of Methicillin-Resistant Staphylococcus aureusin 3 Affiliated Hospitals. Infection control and hospital epidemiology: the official journal of the Society of Hospital Epidemiologists of America, 30: 233–241.
[26]
Jevons, M. P. (1961). “Celbenin” - Resistant Staphylococci. British Medical Journal, 124–125.
[27]
Katzif, S., Lee, E. H., Law, A. B., Tzeng, Y. L., Shafer, W. M. (2005). CspA regulates pigment production in Staphylococcus aureus through a SigB-dependent mechanism. Journal of Bacteriology, 187: 8181–8184.
[28]
Kennedy, A. D., Otto, M., Braughton, K. R., Whitney, A. R., Chen, L., Mathema, B., Mediavilla, J. R., Byrne, K. A., Parkins, L. D., Tenover, F. C., et al.(2008). Epidemic community-associated methicillin-resistant Staphylococcus aureus: recent clonal expansion and diversification. Proceedings of the National Academy of Sciences, 105: 1327–1332.
[29]
Kreiswirth, B. N., Löfdahl, S., Betley, M. J., O'Reilly, M., Schlievert, P. M., Bergdoll, M. S., Novick, R. P. (1983). The toxic shock syndrome exotoxin structural gene is not detectably transmitted by a prophage. Nature, 305: 709–712.
[30]
Kuroda, M, Ohta T, Uchiyama I, Baba T, Yuzawa, H., Kobayashi, I., Cui, L., Oguchi, A., Aoki, K. I., Nagai, Y., et al.(2001). Whole genome sequencing of meticillin-resistant Staphylococcus aureus. The Lancet, 357: 1225–1240.
[31]
Li, C., Sun F, Cho H, Yelavarthi V, Sohn C, He C, Schneewind O, Bae T (2010). CcpA Mediates ProlineAuxotrophy and Is Required for Staphylococcus aureus Pathogenesis. Journal of Bacteriology, 192: 3883–3892.
[32]
Li, M., Du, X., Villaruz, A. E., Diep, B. A., Wang, D., Song, Y., Tian, Y., Hu, J, Yu, F., Lu, Y., et al (2012). MRSA epidemic linked to a quickly spreading colonization and virulence determinant. Nature Medicine, 18: 816–819.
[33]
Liu, G. Y. (2005). Staphylococcus aureus golden pigment impairs neutrophil killing and promotes virulence through its antioxidant activity. Journal of Experimental Medicine, 202: 209–215.
[34]
McDougal, L. K., Steward, C. D, Killgore, G. E., Chaitram, J. M., McAllister, S. K., Tenover, F. C. (2003). Pulsed-Field Gel Electrophoresis Typing of Oxacillin-Resistant Staphylococcus aureus Isolates from the United States: Establishing a National Database. Journal of clinical microbiology, 41: 5113–5120.
[35]
Millar, B. C., Loughrey, A., Elborn, J. S., Moore, J. E. (2007). Proposed definitions of community-associated meticillin-resistant Staphylococcus aureus (CA-MRSA) Journal of Hospital Infection, 67: 109–113.
[36]
Moore, C. L., Hingwe, A., Donabedian, S. M., Perri, M. B., Davis, S. L., Haque, N. Z., Reyes, K., Vager, D., Zervos, M. J. (2009). Comparative evaluation of epidemiology and outcomes of methicillin-resistant Staphylococcus aureus (MRSA) USA300 infections causing community- and healthcare-associated infections. International Journal of Antimicrobial Agents, 34: 148–155.
[37]
Nair, D., Memmi, G., Hernandez, D., Bard, J., Beaume, M., Gill, S., François, P., Cheung, A. L. (2011). Whole-Genome Sequencing of Staphylococcus aureus Strain RN4220, a Key Laboratory Strain Used in Virulence Research, Identifies Mutations That Affect Not Only Virulence Factors but Also the Fitness of the Strain. Journal of Bacteriology, 193: 2332–2335.
[38]
Novick, R. P. (1967). Properties of a cryptic high-frequency transducing phage in Staphylococcus aureus. Virology, 33: 155–166.
[39]
Novick, R. P., Richmond, M. H. (1965). Nature And Interactions of The Genetic Elements Governing Penicillinase Synthesis In Staphylococcus aureus. Journal of Bacteriology, 90: 467–480.
[40]
Ogston, A. (1881). Report upon Micro-Organisms in Surgical Diseases. British Medical Journal, 1: 369–375.
[41]
Pelz, A., Wieland, K. P.., Putzbach, K., Hentschel, P., Albert, K., Götz, F. (2005). Structure and biosynthesis of staphyloxanthin from Staphylococcus aureus. The Journal of biological chemistry, 280: 32493–32498.
[42]
Peng, H. L., Novick, R. P., Kreiswirth, B., Kornblum, J., Schlievert, P. (1988). Cloning, characterization, and sequencing of an accessory gene regulator (agr) in Staphylococcus aureus. Journal of Bacteriology, 170: 4365–4372.
[43]
Popovich, K. J., Weinstein, R. A., Hota, B. (2008). Are Community-Associated Methicillin-Resistant Staphylococcus aureus (MRSA) Strains Replacing Traditional Nosocomial MRSA Strains? Clinical infectious diseases: an official publication of the Infectious Diseases Society of America. 46: 787–794.
[44]
Sabath, L. D., Wallace, S. J., Gerstein, D. A. (1972). Suppression of Intrinsic Resistance to Methicillin and Other Penicillins in Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 2: 350–355.
[45]
Sakoulas, G., Gold, H. S., Venkataraman, L., DeGirolami, P. C., Eliopoulos, G. M., Qian, Q. (2001). Methicillin-Resistant Staphylococcus aureus: Comparison of Susceptibility Testing Methods and Analysis of mecA-Positive Susceptible Strains. Journal of clinical microbiology, 39: 3946–3951.
[46]
Seidl, K., Müller, S., Francois, P., Kriebitzsch, C., Schrenzel, J., Engelmann, S., Bischoff, M., Berger-Bächi, B. (2009). Effect of a glucose impulse on the CcpAregulon in Staphylococcus aureus. BMC Microbiology, 9: 95.
[47]
Sieradzki, K., Leski, T., Dick, J., Borio, L., Tomasz, A. (2003). Evolution of a vancomycin-intermediate Staphylococcus aureus strain in vivo: multiple changes in the antibiotic resistance phenotypes of a single lineage of methicillin-resistant S. aureus under the impact of antibiotics administered for chemotherapy. Journal of clinical microbiology, 41: 1687–1693.
[48]
Soutourina, O., Poupel, O., Coppée, J. Y., Danchin, A., Msadek, T., Martin-Verstraete, I. (2009). CymR, the master regulator of cysteine metabolism in Staphylococcus aureus, controls host sulphur source utilization and plays a role in biofilm formation. Molecular Microbiology, 73: 194–211.
[49]
Thurlow, L. R., Joshi, G. S., Richardson, A. R. (2012). Virulence strategies of the dominant USA300 lineage of community-associated methicillin-resistant Staphylococcus aureus (CAMRSA) FEMS Immunology & Medical Microbiology, 65: 5–22.
[50]
Ubukata, K., Nonoguchi, R., Matsuhashi, M., Konno, M. (1989). Expression and inducibility in Staphylococcus aureus of the mecA gene, which encodes a methicillin-resistant S. aureus-specific penicillin-binding protein. Journal of Bacteriology, 171: 2882–2885.
[51]
Unal, S., Hoskins, J., Flokowitsch, J. E., Wu, C. Y., Preston, D. A., Skatrud, P. L. (1992). Detection of methicillin-resistant staphylococci by using the polymerase chain reaction. Journal of clinical microbiology, 30: 1685–1691.
[52]
Weber, J. T. (2005). Community-associated methicillin-resistant Staphylococcus aureus. Clinical Infectious Diseases, 41 (Suppl 4): S269–72.
[53]
Kataoka, A. I., Enache, E., Napier, C., Hayman, M., Weddig, L. (2016). Effect of Storage Temperature on the Outgrowth and Toxin Production of Staphylococcus aureus in Freeze-Thawed Precooked Tuna Mea. Journal of Food Protection. 4 (1): 524-686.
[54]
Zeleny, R., Emteborg, H., Charoud-Got, J., Schimmel, H., Nia, Y., Mutel, I., Ostyn, A., Herbin, S., Hennekinne, J. A. (2015 Development of a reference material for Staphylococcus aureus enterotoxin A in cheese: Feasibility study, processing, homogeneity and stability assessment. Food Chemistry. 168 (1): 241–246.