American Journal of Microbiology and Immunology
Articles Information
American Journal of Microbiology and Immunology, Vol.2, No.1, Jan. 2017, Pub. Date: Feb. 28, 2017
Structure and Function of Disease Resistance Proteins in Plants
Pages: 1-6 Views: 3416 Downloads: 1123
Authors
[01] Adane Gebeyehu Demissie, National Agricultural Biotechnology Research Center, Ethiopia.
Abstract
Resistance proteins are the most effective weapons of plants against pathogen invasion since they can recognize the corresponding pathogen effectors or associated proteins to activate plant immune response. Up to date, greater than seventy resistance proteins have been identified from different plant species. Most resistance proteins contain conserved domains such as the nucleotide-binding sites, the leucine-rich repeat, the coiled-coil domain and others. These domains play significant roles in resistance proteins interaction with effector proteins from pathogens and inactivating signals involved in innate immunity. This review highlights illuminating the structure and function of the isolated plant resistance proteins in different plant-pathogen interaction systems.
Keywords
Plant Disease, Resistance Proteins, Defense Response
References
[01] Ade J, DeYoung BJ, Golstein C, Innes RW. (2007). Indirect activation of a plant nucleiotide binding site-leucine-rich repeat protein by a bacterial protease. Proc Natl Acad Sci USA, 104: 2531-2536.
[02] Bernoux, M., Ve, T., Williams, S., Warren, C., Hatters, D., Valkov, E., and Dodds, P. N. (2011). Structural and functional analysis of a plant resistance protein TIR domain reveals interfaces for self-association, signaling, and auto regulation. Cell host and microbe, 9.3: 200-211.
[03] Boller, T., and He, S. (2009). Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens. Science, 324.5928: 742.
[04] Burch-Smith, T. M., Schiff, M., Caplan, J. L., Tsao, J., Czymmek, K., &Dinesh-Kumar, S. P. (2007). A novel role for the TIR domain in association with pathogen-derived elicitors. PLoS biology, 5 (3), e68.
[05] Dangl, J. L., and Jones, J. D. (2006). Plant pathogens and integrated defense responses to infection. Nature, 411.6839: 826-833.
[06] Dodds, P., Lawrence, G., Catanzariti, A., Teh, T., Wang, C., Ayliffe, M., and Ellis, J. (2006). Direct protein interaction underlies gene-for-gene specificity and co-evolution of the flax resistance genes and flax rust avirulence genes. The National Academy of Sciences proceedings, 103.23: 8888-8893.
[07] Eulgem, T. and Somssich, I. E. (2007). Networks of WRKY transcription factors in defense signaling. Curr. Opin. Plant Biol. 10: 366-371.
[08] Helft, L., Reddy, V., Chen, X., Koller, T., Federici, L., Fernandez-Recio, J. and Bent, A. (2011). LRR conservation mapping to predict functional sites within protein leucine-rich repeat domains. PloS one, 6.7: e21614.
[09] Henty-Ridilla, J. L., Shimono, M., Li, J., Chang, J. H., Day, B., & Staiger, C. J. (2013). The plant actin cytoskeleton responds to signals from microbe-associated molecular patterns. PLoS pathogens, 9.4: e1003290.
[10] Houterman, P. M., Cornelissen, B. J., and Rep, M. (2008). Suppression of plant resistance gene based immunity by a fungal effector. PLoS Pathogens, 4.5: e1000061.
[11] Kajander, T., Cortajarena, A. and Regan, L. (2006). Consensus design as a tool for engineering repeat proteins. Methods Moecular Biology 340: 151–170.
[12] Kaplan, T. B., Koelblen, T., Felix, C., Candusso, M. P., O’Callaghan, D., Vergunst, A. C., and Terradot, L. (2013). Structure of the Toll/interleukin 1 receptor (TIR) domain of the immune-suppressive Brucella effector BtpA/Btp1/TcpB. FEBS letters, 587.21: 3412-3416.
[13] Katharina M. and Georg F., (2012). Ligands of RLKs and RLPs involved in defense and symbiosis. In Receptor-like Kinases in Plants. Springer Berlin Heidelberg, 173-194.
[14] Kohler, A., Rinaldi, C., Duplessis, S., Baucher, M., Geelen, D., Duchaussoy, F., Meyers, B. C., Boerjan, W. and Martin, F. (2008). Genome-wide identification of NBS resistance genes in Populus trichocarpa. Plant Mol. Biol. 66: 619-636.
[15] Koropacka, K. B. (2010). Molecular contest between potato and the potato cyst nematode Globodera pallida: modulation of Gpa2-mediated resistance (p. 131). sn].
[16] Lukasik, E. and Takken, F. (2009). STANDing strong, resistance proteins instigators of plant defense. Curr. Opin. Plant Biol. 12: 427-436.
[17] Maekawa, T., Somssich, I. E., Takken, F. L. W., Petrescu, A. J., Chai, J., Schulze-Lefert, P.,... and Micluta, M. A. (2011). Coiled-coil domain-dependent homodimerization of intracellular barley immune receptors defines a minimal functional module for triggering cell death. Cell, Host & Microbe, 9.3: 187-199.
[18] Mestre, P., & Baulcombe, D. C. (2006). Elicitor-mediated oligomerization of the tobacco N disease resistance protein. The Plant Cell Online, 18 (2), 491-501.
[19] Meyers, B. C., Dickerman, A. W., Michelmore, R. W., Sivaramakrishnan, S., Sobral, B. W. and Young, N. D. (1999). Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide binding super family. Plant J. 20: 317-332.
[20] Meyers, B. C., Kozik, A., Griego, A., Kuang, H. and Michelmore, R. W. (2003). Genome-wide analysis of NBS LRR-encoding genes in Arabidopsis. Plant Cell 15: 809-834.
[21] Miller, R. N., Bertioli, D. J., Baurens, F. C., Santos, C. M., Alves, P. C., Martins, N. F., Togawa, R. C., Souza, M. T. and Pappas, G. J. (2008). Analysis of non- TIR-NBS-LRR resistance gene analogs in Musa acuminata Colla: isolation, RFLP marker development, and physical mapping. BMC Plant Biol. 8: 15.
[22] Moffett, P., Farnham, G., Peart, J., and Baulcombe, D. (2002). Interaction between domains of the plant NBS–LRR protein in disease resistance related cell death. The EMBO journal, 21.17: 4511-4519.
[23] Nurnberger, T., & Kemmerling, B. (2006). Receptor protein kinases–pattern recognition receptors in plant immunity. Trends in Plant Scencei, 11, 519–522.
[24] Pan, Q., Wendel, J., & Fluhr, R. (2000). Divergent evolution of plant NBS-LRR resistance gene homologues in dicot and cereal genomes. Journal of Molecular Evolution, 50, 203–213.
[25] Rairdan, G. J., and Moffett, P. (2006). Distinct domains in the ARC region of the potato resistance protein Rx mediate LRR bindingand inhibition of activation. Plant Cell 18: 2082–2093.
[26] Rivas, S., & Thomas, C. M. (2005). Molecular interactions between tomato and the leaf mold pathogen Cladosporium fulvum. Annual Review of Phytopathology, 43, 395–436.
[27] Seiffert, B., Vier, J., and Hacker, G. (2002). Sub-cellular localization, oligomerization, and ATP binding of Caenorhabditis elegans CED-4. Biochemical and biophysical research communications, 290.1: 359-365.
[28] Shao, F., Golstein, C., Ade, J., Stoutemyer, M., Dixon, J. E., & Innes, R. W. (2003). Cleavage of Arabidopsis. PBS1 by a bacterial type III effector. Science, 301, 1230–1233.
[29] Slootweg, E., Tameling, W., Roosien, J., Lukasik, E., Joosten, M., Takken, F.,... & Goverse, A. (2009). An outlook on the localisation and structure-function relationships of R proteins in Solanum. Potato research, 52.3: 229-235.
[30] Slootweg, E., Roosien, J., Spiridon, L. N., Petrescu, A. J., Tameling, W., Joosten, M.,... & Goverse, A. (2010). Nucleocytoplasmic distribution is required for activation of resistance by the potato NB-LRR receptor Rx1 and is balanced by its functional domains. The Plant Cell Online, 22.12: 4195-4215.
[31] Takken, F. L., Albrecht, M., and Tameling, W. I. (2006). Resistance proteins: molecular switches of plant defence. Current opinion in plant biology, 9.4: 383-390.
[32] Tameling, W. I., Vossen, J. H., Albrecht, M., Lengauer, T., Berden, J. A., Haring, M. A.,... & Takken, F. L. (2006). Mutations in the NB-ARC domain of I-2 that impair ATP hydrolysiscause autoactivation. Plant physiology, 140.4: 1233-1245.
[33] Tameling, W. I. L. and Baulcombe, D. C. (2007). Physical association of the NB-LRR resistance protein Rx with a Ran GTPase-activating protein is required for extreme resistance to potato virus X. Plant Cell 19: 1682-1694.
[34] Tarr, D. E. K., and Alexander, H. M. (2009). TIR-NBS-LRR genes are rare in monocots: evidence from diverse monocot orders. BMC research notes, 2.1: 197.
[35] Tuskan, G. A., Difazio, S., Jansson, S., Bohlmann, J., Grigoriev, I., Hellsten, U., et al. (2006). The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science, 313, 1596–1604.
[36] Ueda, H., Yamaguchi, Y. and Sano, H. (2006). Direct interaction between the Tobacco Mosaic Virus helicase domain and the ATP-bound resistance protein, N-factor during the Hypersensitive Response in tobacco plants. Plant molecular biology, 61.1-2: 31-45.
[37] van Ooijen, G., Mayr, G., Kasiem, M. M., Albrecht, M., Cornelissen, B. J., and Takken, F. L. (2008). Structure–function analysis of the NB-ARC domain of plant disease resistance proteins. Journal of experimental botany, 59.6: 1383-1397.
[38] Ve, T., J Gay, N., Mansell, A., Kobe, B., & Kellie, S. (2012). Adaptors in toll-like receptor signaling and their potential as therapeutic targets. Current drug targets, 13.11: 1360-1374.
[39] Williams, S. J., Sohn, K. H., Wan, L., Bernoux, M., Sarris, P. F., Segonzac, C.,... & Jones, J. D. (2014). Structural basis for assembly and function of a heterodimeric plant immunereceptor. Science, 344.6181: 299-303.
600 ATLANTIC AVE, BOSTON,
MA 02210, USA
+001-6179630233
AIS is an academia-oriented and non-commercial institute aiming at providing users with a way to quickly and easily get the academic and scientific information.
Copyright © 2014 - American Institute of Science except certain content provided by third parties.