Articles Information
American Journal of Geophysics, Geochemistry and Geosystems, Vol.4, No.4, Dec. 2018, Pub. Date: Jan. 31, 2019
Geoelectric Groundwater Investigation and Structural Interpretation in the Southeasthern Adamawa (Cameroon)
Pages: 38-59 Views: 1528 Downloads: 675
Authors
[01]
Jean Jacques Nguimbous-Kouoh, Department of Mines, Petroleum, Gas and Water Resources Exploration, Faculty of Mines and Petroleum Industries, University of Maroua, Kaele, Cameroon.
[02]
Eliezer Manguelle-Dicoum, Department of Physics, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon.
Abstract
Knowing where potable water is in certain parts of Cameroon is a difficult operation. The aim of this work is: to present the results of vertical electrical soundings (VES) carried out in ten villages of Adamawa and to determine the areas favourable to the implantation of drinking water boreholes and propose a structural interpretation. Correlations between the sounding curves and the lithologic sections enabled to determine: the depth of the geological layers likely to contain water and the maximum depth of the boreholes. Resistivity maps were computed to map areas suitable for water drilling and to locate resistivity lineaments and their direction. These maps demonstrated that the preferred structural directions in the region are N-S, E-W, NW-SE, and NE-SW. Structural interpretation has been performed through pseudo-sections, geoelectric sections, and geologic sections to highlight areas of faults, fractures, and other types of geological objects. This structural interpretation enabled to highlight: faults supposed to be crustal and inferred; geological formations of tertiary volcanism; Cretaceous sediments; pan-African syn and post-tectonic granitites and relics of an ebonite basement.
Keywords
VES, Sounding Curves, Lithology-Log, Hydrogeology, Structural Interpretation
References
[01]
Zohdy A. A. R., 1939. A new method for the automatic interpretation of Schlumberger and Wenner sounding curve. Geophysics, vol. 54 (no. 2): p. 245-253.
[02]
Zohdy A. A. R., 1963. The effect of current leakage and electrode spacing errors on resistivity measurements. Geological surveyprofèssional paper, vol. 600D: p. D258-D264.
[03]
Kelly W. E., 1977. Geoelectricsounding for estimating aquifer hydraulic conductivity. Ground Water, vol. 15 (no. 6): 420-425.
[04]
Kosinski W. K., and Kelly W., 1981. Geoelectric soundings for predicting aquifer properties. Ground Water, 19:163-171.
[05]
Kalinski R. J., Kelly W. E. andBogardi I., 1993. Combined use of geoelectric sounding and profiling to quantify aquifer protection properties. Ground Water, 31: 538-544.
[06]
Candansayar, M. E., 2008. Two-dimensional individual and joint inversion of three-and four electrode array DC resistivity data. J. Geophys. Eng. 5, 290-300.
[07]
Maxwell, O., Wagiran, H., Ibrahim, N., Andrews, I. O., Solomon, O. O., and Sabri, S., 2014. Integrated geoelectrical and structural studies for groundwater investigation in parts Abuja, North Central Nigeria. Near surface Geophysics, 12, 515-521.
[08]
Tchotsoua M., Ndame J. P. Wakponou A. Bonvallot J., 1999. Control and management of water in Ngaoundere (Cameroon): Problems and strategies. Geo-Eco-Trop, 23, 91-105.
[09]
Tchameni R., Pouclet A., Penaye J., Ganwa A. A, Toteu S. F. 2006. Petrography and geochemistry of the Ngaoundéré Pan African granitoïds in central north Cameroon: Implications for their sources and geological setting. J. Afr. Earth Sci., 44: 511-529.
[10]
Ngounou-Ngatcha B., Lewa S., Ekodeck G. E., 2007. The issue of access to potable water In the town of Ngaoundere (Northern central of Cameroon), Sud Sciences et technologies, 15, 40-45.
[11]
Nkouandou O. F., Ngounouno-Ismaïla, and Deruelle B., 2010. Géochimie des laves basaltiques récentes des zones Nord et Est de Ngaoundéré (Cameroun, Plateau de l’Adamaoua, Afrique centrale): pétrogenèse et nature de la source. Int. J. Biol. Chem. Sci. 4 (4): 984-1003.
[12]
Stuart, G. W., Fairhead, J. D., Dorbath, L. and Dorbath, C., 1985. A Seismic Refraction Study of the Crustal Structure Associated with the Adamawa Plateau and Garoua Rift, Cameroon, West Africa. Geophysics Journal Royal Astronomical Society, 81-112.
[13]
Poudjom-Djomani, Y. H., Nnange, J. M. Diamcnt, M., Ebinge, C. J. andFairhead, J. D., 1995. Effective elastic thickness and crustal thickness variations in west central Africa inferred from gravity data. Journal of geophysical research, 100, 22, 047-22, 070.
[14]
Nnange, J. M., Ngako, V., Fairhead, J. D. and Ebinger, C. J., 2000. Depths to Density Discontinuities beneath the Adamawa Plateau Region, Central Africa, from Spectral Analysis of New and Existing Gravity Data. Journal of African Earth Sciences, 30, 887-901.
[15]
Noutchogwe, T. C., Tabod, C. T. and Manguelle-Dicoum, E., 2006. A Gravity Study of the Crust Beneath the Adamawa Fault Zone, West Central Africa. Journal of Geophysics and Engineering, 3, 82-89.
[16]
Noutchogwe, T. C., Koumetio, F. and Manguelle-Dicoum, E., 2010. Structural Features of South-Adamawa (Cameroon) Inferred from Magnetic Anomalies: Hydrogeological Implications C. R. Geoscience, 342, 467-474.
[17]
Tchouatcha S. M., Njiké-Ngaha P. R., Mahmoud-Magdy Salah, Deaf Amr Said and Ekodeck E. G., 2010. Existence of late continental deposits in the Mbere and Djerem sedimentary basins (North Cameroon): Palynologic and stratigraphic evidence. Journal of Geology and Mining Research Vol. 2 (6), 159-169.
[18]
Tokam, A., Tabod, C. T., Nyblade, A. A. and Julià, J., 2010. Structure of the Crust beneath Cameroon, West Africa, from the Joint Inversion of Rayleigh Wave Group Velocities and Receiver Functions. Geophysical Journal International, 183, 1061-1076.
[19]
Kengni, S. H. P., Tabod, C. T., Ndikum, E. N., Tokam-Kamga, A. P. and Pokam, P. G., 2018. Thickness Variations in the Lithospheric Mantle and the Low Velocity Zone of the Adamawa Plateau (Cameroon) from Teleseismic Receiver Functions. Open Journal of Geology, 8, 529-542.
[20]
Ngako V., Jegouzo P., Soba D., 1991. Le cisaillement centre camerounais. Le role structurale et géodynamique dans l’orogénèse panafricaine. Compte rendu de l’académie de science de Paris, 315, 371-377.
[21]
Szalai, S., and Szarka, L., 2008. On the classification of surface geoelectricarrays. Geophys. Prosp. 56, 159-175.
[22]
Odudury, P., Mamah, L. 2014. Integration of electrical resistivity and induced polarization for subsurface imaging around Ihe Pond, Nsukka, Anambra basin, Nigeria. Pac. J. Sci. Technol. 2014, 15, 306–317.
[23]
Arjwech, R., Everett, M. E., 2015. Application of 2D electrical resistivity tomography to engineering projects: Three case studies. Songklanakarin J. Sci. Technol. 2015, 37, 675–682.
[24]
Okoro, E. I., Egboka, B. C. E., Onwuemesi, A. G., (2010). Evaluation of the aquifer characteristics of Nanka Sands using Hydrogeological method in combination with vertical electrical sounding (VES). Journal of applied sciences and environmental management, 14 (2), pp 5-9.
[25]
Alile, O. M, Ujuambi., and Evbuomwan, I. A., 2011. Geoelectric investigation of groundwater in Obaretin-Iyanornon Locality, Edo State, Nigeria, Journal of geology and mining research, 3 (1), pp 13-20.
[26]
RajivSinha, Yadav G. S., Sanjeev Gupta, Ajit Singh, Lahiri S. K., 2012. Geo-electric resistivity evidence for subsurface palaeochannel systems adjacent to Harappan sites in northwest India. Quaternary International (2012), 1-10.
[27]
Bobachev, A., 2002. IPI2win- A window software of an automatic interpretation of resistivity sounding data; Moscow State University.
[28]
AlvaKurniawan, 2009. IP2win, geoelectric data analysis software, Moscow State University, Geological Faculty, Department of Geophysics.
[29]
Johann-Elsass, 2012. Drilling, drawing software for geological and technical sections, brgm geoscience for a sustainable earth.