American Journal of Geophysics, Geochemistry and Geosystems
Articles Information
American Journal of Geophysics, Geochemistry and Geosystems, Vol.1, No.4, Oct. 2015, Pub. Date: Aug. 12, 2015
Laboratory Method for Estimating Solute Transport Parameters of Unsaturated Soils
Pages: 149-154 Views: 5503 Downloads: 1920
Authors
[01] Kanzari S., National Research Institute for Rural Engineering, Water and Forestry, INRGREF, University of Carthage, Ariana, Tunisia.
[02] Hachicha M., National Research Institute for Rural Engineering, Water and Forestry, INRGREF, University of Carthage, Ariana, Tunisia.
[03] Bouhlila R., Laboratory of Modeling in Hydraulics and Environment, National Engineering School of Tunis, Tunis, Tunisia.
Abstract
Modeling the contaminant transport process in soils requires the solute transport parameters. Displacement experiments were carried out on soil columns (Sand – Silt – Clay) by injecting a solution of 0.8 M KCl in a steady state. Breakthrough curves are symmetrical, characteristics of an equilibrium solute transport. The hydrodynamic dispersion coefficients were estimated by optimizing the measured breakthrough curves with the analytical solution of the advection-dispersion equation (EAD) by the software CXTFIT. The validations of the results were performed by a direct simulation with Hydrus-1D model. The estimation results were assessed by calculating the mean square error RMSE, the average geometric error GMER and the non-parametric Mann-Whitney test. Statistical analysis showed the success of the used method to estimate the solute transport parameters of the studied soils.
Keywords
Soil, Displacement Experiment, Parameter Estimation, CXTFIT, Hydrus-1D
References
[01] Álvarez-benedí J. et munoz-carpena R., 2005. Soil-Water solute process characterization: An Integrated Approach. CRC PRESS edition, 816 pp.
[02] Bégin L., Fortin J. et Caron J., 2003. Evaluation of the Fluoride Retardation Factor in Unsaturated and Undisturbed Soil Columns. Soil Science Society of America Journal, 67:1635–1646.
[03] Brooks R. J., and Corey A.T., 1964. Hydraulic properties of porous media, Hydrology Papers. 3, Colo. State Univ., Fort Collins, 37pp.
[04] Costa J. L et Prunty L., 2006. Solute transport in fine sandy loam soil under different flow rates. Agricultural Water Management, 83:111-118.
[05] DeSmet F. et Wierenga P.J., 1984. Solute transfer through columns pf glass beads. Water Resources Research, 20: 225–232.
[06] Field M., 2002. The QTRACER2 program for tracer-breakthrough curve analysis for tracer tests in karstic aquifers and other hydrologic systems. EPA/600/R-02/001
[07] Fonseca B., Teixeira A., Figueirdo H. et Tavares T., 2009. Modelling of the Cr(VI) transport in typical soils of the north of Portugal. Journal of Hazardous Materials, 167:756-762.
[08] Gonçalves M. C., Leij F.J. et Schaap M.G., 2001. Pedotransfer fucntions for solute transport parameters of Portuguese soils. European Journal of Soil Sciences, 12:563-574.
[09] Käss W., 1998. Tracing Technique in Geohydrology, A. A. Balkema, Rotterdam, Brookfield, Vt., 581 pp.
[10] Kasteel R., Putz T., Vanderbroght J. et Vereecken H., 2009. Solute spreading under transient conditions in a field soil. Vadose Zone Journal, 8:690-702.
[11] Khan A. U.-H. et Jury W.A., 1990. A laboratory study of the dispersion scale effect in column outflow experiments. Journal of Contaminant Hydrology, 5: 119-131.
[12] Leij F. J., Toride N. et van Genuchten M.Th., 1993. Analytical solutions for non-equilibrium solute transport in three-dimensional porous media. Journal of Hydrology, 151:193-228.
[13] Li L., Barry D. A., Morris J. et Stagnitti F., 1999. CXTANNEL: an improved program for estimating solute transport parameters. Environmental Modelling & Software, 14:607-611.
[14] Mallants D., Vanclooster M., Meddahi M. et Feyen J., 1994. Estimating solute transport in undisturbed soil columns using time-domain reflectometry. Journal of Contaminant Hydrology, 17:91-109.
[15] Maraqa M. A., Wallace R.B. et Voice T.C., 1997. Effects of degree of water saturation on dispersivity and immobile water in sandy soil columns. Journal of Contaminant Hydrology, 25: 199–218.
[16] Millington R. J., and Quirk. J.M., 1961. Permeability of porous solids. Transactions of the Faraday Society, 57: 1200-1207.
[17] Nützmann, G., Maciejewski S. et Joswig K., 2002. Estimation on water saturation dependence of dispersion in unsaturated porous media : experiments and modelling analysis. Advances in Water Resources, 25: 565-576.
[18] Padilla I. Y., Yeh T.C.J. et Conklin M.H., 1999. The effect of water content on solute transport in unsaturated porous media. Water Resources Research, 35(11): 3303-3313.
[19] Parker J. C. et van Genuchten M.Th., 1984. Flux-Averaged and Volume Averaged concentrations in continuum approaches to solute transport. Water Resources Research, 7:866-872.
[20] Radcliffe D.E. et Šimůnek J., 2010. Soil Physics with Hydrus – Modelling and Applications. CRC Press, 373pp.
[21] Richards L.A., 1931. Capillary conduction of liquids through porous mediums. Physics, 1: 518-533.
[22] Roger B. et Herbert Jr., 2011. Implications of non-equilibrium transport in heterogeneous reactive barrier systems: Evidence from laboratory denitrification experiments. Journal of Contaminant Hydrology, 123:30-39.
[23] Sauty J. P., Kinzelbach W. et Voss A., 1992. Computer Aided Tracer Test Interpretation (CATTI), program documentation, International Ground Water Modeling Center, Golden, Colorado, 64 pp.
[24] Šimůnek, J., van Genuchten M.Th., Sejna M., Toride N., et Leij F.J., 1999. The STANMOD computer software for evaluating solute transport in porous media using analytical solutions of convection-dispersion equation. Versions 1.0 and 2.0, IGWMC - TPS - 71, International Ground Water Modeling Center, Colorado School of Mines, Golden, Colorado, 32pp.
[25] Šimůnek J., Huang K., Sejna M. et van Genuchten M.T., 2005. The HYDRUS-1D software package for simulating the one-dimensional movement of water. heat. and multiple solutes in variably - saturated media. Internaional ground water modelling center Colorado School of Mines. Golden. Colorado, 162 pp.
[26] Tang G., Mayes M.A., Parker J.C. et Jardine P.M., 2010. CXTFIT/Excel-A modular adaptable code for parameter estimation, sensitivity analysis and uncertainty analysis for laboratory or field tracer experiments. Computers & Geosciences, 36:38-47.
[27] Toride N., Leij F. J. et van Genuchten M.Th., 1999. The CXTFIT code for estimating transport parameters from laboratory or field tracer experiment. Research Report N°137, US Salinity Laboratory, Riverside, California, 119pp.
[28] Toride N., Inoue M. et Leij F.J., 2003. Hydrodynamic dispersion in an unsaturated dune sand. Soil Science Society of America Journal, 67:703-712.
[29] Vanclooster M., Mallants D., Diels J. et Feyen J, 1993. Determining local-solute transport parameters using time domain reflectometry (TDR). Journal of Hydrology, 148:93-107.
[30] Vanderborght J. et Vereecken H., 2007. Review of dispersivities for transport in soils. Vadose Zone Journal, 6:29-52.
[31] Van Genuchten M.T., 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44: 892-898.
[32] Van Genuchten M.Th. et Parker J.C., 1984. Boundary conditions for displacements experiments through short laboratory soil column. Soil Science Society of America Journal, 48:703-708.
[33] Wierenga P.J., 1995. Water and solute transport and storage. In: L.G. Wilson, L.G. Everett et S.J. Cullen (Editors), Handbook of Vadose Zone Characterisation and Monitoring. Lewis Publishers, London, 41-59.
[34] Wierenga P. J. et Van Genuchten M. Th., 1989. Solute transport through small and large unsaturated soil columns". Ground Water, 27(1): 35-42.
[35] Yasuda H., 1996. Soil heterogeneity effects on water and solute transport. Department of Water Resources Engineering. Lund Istitute of Technology, Lund University, Sweden, Report N°1016. 37 pp.
[36] Young D. F. et Ball W.P., 2000. Column experimental design requirements for estimating model parameters from temporal under nonequilibrium conditions. Advances in Water Resources, 23:449-460
[37] Yule, D. F. et Gardner, W.R., 1978. Longitudinal and transverse dispersion coefficient in unsaturated plain field sand. Water Resources Research, 14: 582–588.
600 ATLANTIC AVE, BOSTON,
MA 02210, USA
+001-6179630233
AIS is an academia-oriented and non-commercial institute aiming at providing users with a way to quickly and easily get the academic and scientific information.
Copyright © 2014 - American Institute of Science except certain content provided by third parties.